1,151 research outputs found
Features of Polymeric Structures By Surface—Selective Laser Sintering of Polymer Particles Using Water as Sensitizer
The development of scaffolds with strictly specific properties is a key aspect of functional tissue regeneration, and it still remains one of the greatest challenges for tissue engineering. This study is aimed to determine the possibility of producing three-dimensional polylactide (PLA) scaffolds using the method of surface-selectiv laser sintering (SSLS) for bone tissue regeneration. In this work, the authors also improved PLA scaffold adhesion properties, which are crucial for successful cellular growth and expansion. Thus, SSLS method proved to be effective in designing threedimensional porous scaffolds with differentiated mechanical properties.
Keywords: regenerative medicine, scaffolds, polylactide, surface – selective laser . sintering, tissue engeneering
Laser Printing of Gel Microdrops with Living Cells and Microorganisms
We report the results of experiments on laser printing (wavelength λ=1064 nm) with gel microdrops acting as carriers of living microbial and cellular objects. The dynamics of transport processes with the help of high-speed optical video was studied, which allows to determine characteristics of the formed gel jets and to optimize the operating mode of the laser. It is shown that laser pulses of 4 to 20 ns duration and energy E ≤ 20 μJ should be used to minimize the negative effect on living systems. The results can be used to optimize the technologies of cellular printing and laser engineering of microbial systems (LEMS). LEMS technology is used to isolate hard-cultivated and non-cultivated by classical methods of microorganisms that can act as producers of new biologically active substances and antibiotics.
Keywords: laser printing, gel, microdrop, living cell, microbia
Flame front propagation IV: Random Noise and Pole-Dynamics in Unstable Front Propagation II
The current paper is a corrected version of our previous paper
arXiv:adap-org/9608001. Similarly to previous version we investigate the
problem of flame propagation. This problem is studied as an example of unstable
fronts that wrinkle on many scales. The analytic tool of pole expansion in the
complex plane is employed to address the interaction of the unstable growth
process with random initial conditions and perturbations. We argue that the
effect of random noise is immense and that it can never be neglected in
sufficiently large systems. We present simulations that lead to scaling laws
for the velocity and acceleration of the front as a function of the system size
and the level of noise, and analytic arguments that explain these results in
terms of the noisy pole dynamics.This version corrects some very critical
errors made in arXiv:adap-org/9608001 and makes more detailed description of
excess number of poles in system, number of poles that appear in the system in
unit of time, life time of pole. It allows us to understand more correctly
dependence of the system parameters on noise than in arXiv:adap-org/9608001Comment: 23 pages, 4 figures,revised, version accepted for publication in
journal "Combustion, Explosion and Shock Waves". arXiv admin note:
substantial text overlap with arXiv:nlin/0302021, arXiv:adap-org/9608001,
arXiv:nlin/030201
- …