3 research outputs found

    Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application

    No full text
    Abstract Background Alkaline thermostable lipase and biosurfactant producing bacteria are very interested at detergent applications, not only because of their eco-friendly characterize, but alsoproduction lipase and biosurfactant by using cheap materials. Ochrobactrum intermedium strain MZV101 was isolated as washing powder resistant, alkaline thermostable lipase and biosurfactant producing bacterium in order to use at detergent applications. Methods O. intermedium strain MZV101 produces was lipase and biosurfactant in the same media with pH 10 and temperature of 60 °C. Washing test and some detergent compatibility character of lipase enzyme and biosurfactant were assayed. The antimicrobial activity evaluated against various bacteria and fungi. Results Lipase and biosurfactant produced by O. intermedium strain MZV101 exhibited high stability at pH 10–13 and temperature of 70–90 °C, biosurfactant exhibits good stability at pH 9–13 and thermostability in all range. Both lipase and biosurfactant were found to be stable in the presence of different metal ions, detergents and organic solvents. The lipase enzyme extracted using isopropanol with yield of 69.2% and biosurfactant with ethanol emulsification index value of 70.99% and yield of 9.32 (g/l). The single band protein after through from G-50 Sephadex column on SDS-PAGE was calculated to be 99.42 kDa. Biosurfactant O. intermedium strain MZV101 exhibited good antimicrobial activity against Gram-negative bacteria and against various bacterial pathogens. Based upon washing test biosurfactant and lipase O. intermedium strain MZV101considered being strong oil removal. Conclusion The results of this study indicate that isolated lipase and biosurfactant with strong oil removal, antimicrobial activity and good stability could be useful for detergent applications. Graphical abstrac

    Statistical Methodologies for the Optimization of Lipase and Biosurfactant by Ochrobactrum intermedium Strain MZV101 in an Identical Medium for Detergent Applications

    No full text
    The Plackett–Burman design and the Box–Behnken design, statistical methodologies, were employed for the optimization lipase and biosurfactant production by Ochrobactrum intermedium strain MZV101 in an identical broth medium for detergent applications. Environmental factor pH determined to be most mutual significant variables on production. A high concentration of molasses at high temperature and pH has a negative effect on lipase and biosurfactant production by O. intermedium strain MZV101. The chosen mathematical method of medium optimization was sufficient for improving the industrial production of lipase and biosurfactant by bacteria, which were respectively increased 3.46- and 1.89-fold. The duration of maximum production became 24 h shorter, so it was fast and cost-saving. In conclusion, lipase and biosurfactant production by O. intermedium strain MZV101 in an identical culture medium at pH 10.5–11 and 50–60 °C, with 1 g/L of molasses, seemed to be economical, fast, and effective for the enhancement of yield percentage for use in detergent applications
    corecore