3,268 research outputs found

    Black Hole Hyperaccretion Inflow-outflow Model. I. Long And Ultra-long Gamma-ray Bursts

    Full text link
    Long-duration gamma-ray bursts (LGRBs) and ultra-LGRBs (ULGRBs) originate from collapsars, in the center of which a newborn rotating stellar-mass black hole (BH) surrounded by a massive accretion disk may form. In the scenario of the BH hyperaccretion inflow-outflow model and Blandford-Znajek (BZ) mechanism to trigger gamma-ray bursts (GRBs), the real accretion rate to power a BZ jet is far lower than the mass supply rate from the progenitor star. The characteristics of the progenitor stars can be constrained by GRB luminosity observations, and the results exceed usual expectations. LGRBs lasting from several seconds to tens of seconds in the rest frame may originate from solar-metallicity (Z ∼ 1 Z⊙, where Z and Z⊙ are the metallicities of progenitor stars and the Sun), massive (M ≳ 34 M⊙, where M and M⊙ are the masses of progenitor stars and the Sun) stars or some zerometallicity (Z ∼ 0) stars. A fraction of low-metallicity (Z ≲ 10-2Z⊙) stars, including Population III stars, can produce ULGRBs such as GRB 111209A. The fraction of LGRBs lasting less than tens of seconds in the rest frame is more than 40%, which cannot conform to the fraction of the demanded type of progenitor star. It possibly implies that the activity timescale of the central engine may be much longer than the observed timescale of prompt emission phase, as indicated by X-ray late-time activities. Alternatively, LGRBs and ULGRBs may be powered by a millisecond magnetar central engine. © 2017. The American Astronomical Society. All rights reserved

    Bis­(1H-benzimidazole-κN 3)bis(4-methyl­benzoato-κ 2 O,O′)cobalt(II)

    Get PDF
    In the title mononuclear complex, [Co(C8H7O2)2(C7H6N2)2], the CoII atom is coordinated by four carboxylate O atoms from two 4-methyl­benzoate ligands and two N atoms from two benzimidazole ligands in an octa­hedral coordination geometry. The molecules are assembled via inter­molecular N—H⋯O hydrogen-bonding inter­actions into a three-dimensional network

    Poly[[μ2-aqua-aqua­(μ3-3,5-dinitro­salicylato)barium(II)] monohydrate]

    Get PDF
    In the title coordination polymer, {[Ba(C7H2N2O7)(H2O)2]·H2O}n, the BaII atom is ten-coordinated by seven O atoms from four 3,5-dinitro­salicylatate ligands, two μ2-bridging aqua ligands and one water mol­ecule. The coordination mode is best described as a bicapped square-anti­prismatic geometry. The 3,5-dinitrosalicylatate ligands bridge three Ba atoms. Centrosymmetrically related dinuclear barium units, with a Ba⋯Ba separation of 4.767 (5) Å, form infinite chains, which are further self-assembled into a supra­molecular network through inter­molecular O—H⋯O hydrogen-bonding inter­actions between O atoms of 3,5-dinitro­salicylatate ligands and water mol­ecules

    Searching for Compact Object Candidates from LAMOST Time-Domain Survey of Four K2 Plates

    Full text link
    The time-domain (TD) surveys of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) yield high-cadence radial velocities, paving a new avenue to study binary systems including compact objects. In this work, we explore LAMOST TD spectroscopic data of four K2 plates and present a sample of six single-lined spectroscopic binaries that may contain compact objects. We conduct analyses using phase-resolved radial velocity measurements of the visible star, to characterize each source and to infer the properties of invisible companion. By fitting the radial velocity curves for the six targets, we obtain accurate orbital periods, ranging from \sim (0.6-6) days, and radial velocity semi-amplitudes, ranging from \sim (50-130) km s1^{-1}. We calculate the mass function of the unseen companions to be between 0.08 and 0.17 MM_{\odot}. Based on the mass function and the estimated stellar parameters of the visible star, we determine the minimum mass of the hidden star. Three targets, J034813, J063350, and J064850, show ellipsoidal variability in the light curves from K2, ZTF, and TESS surveys. Therefore, we can put constraints on the mass of the invisible star using the ellipsoidal variability. We identify no X-ray counterparts for these targets except for J085120, of which the X-ray emission can be ascribed to stellar activity. We note that the nature of these six candidates is worth further characterization utilizing multi-wavelength follow-up observations.Comment: 13 pages, 6 figures, accepted for publication in The Astronomical Journa
    corecore