2,235 research outputs found

    Role of G{alpha}12 and G{alpha}13 as Novel Switches for the Activity of Nrf2, a Key Antioxidative Transcription Factor

    Get PDF
    G{alpha}12 and G{alpha}13 function as molecular regulators responding to extracellular stimuli. NF-E2-related factor 2 (Nrf2) is involved in a protective adaptive response to oxidative stress. This study investigated the regulation of Nrf2 by G{alpha}12 and G{alpha}13. A deficiency of G{alpha}12, but not of G{alpha}13, enhanced Nrf2 activity and target gene transactivation in embryo fibroblasts. In mice, G{alpha}12 knockout activated Nrf2 and thereby facilitated heme catabolism to bilirubin and its glucuronosyl conjugations. An oligonucleotide microarray demonstrated the transactivation of Nrf2 target genes by G{alpha}12 gene knockout. G{alpha}12 deficiency reduced Jun N-terminal protein kinase (JNK)-dependent Nrf2 ubiquitination required for proteasomal degradation, and so did G{alpha}13 deficiency. The absence of G{alpha}12, but not of G{alpha}13, increased protein kinase C {delta} (PKC {delta}) activation and the PKC {delta}-mediated serine phosphorylation of Nrf2. G{alpha}13 gene knockout or knockdown abrogated the Nrf2 phosphorylation induced by G{alpha}12 deficiency, suggesting that relief from G{alpha}12 repression leads to the G{alpha}13-mediated activation of Nrf2. Constitutive activation of G{alpha}13 promoted Nrf2 activity and target gene induction via Rho-mediated PKC {delta} activation, corroborating positive regulation by G{alpha}13. In summary, G{alpha}12 and G{alpha}13 transmit a JNK-dependent signal for Nrf2 ubiquitination, whereas G{alpha}13 regulates Rho-PKC {delta}-mediated Nrf2 phosphorylation, which is negatively balanced by G{alpha}12

    In-silico based redesign of CO-dehydrogenase catalyzing the oxidation of toxic waste CO gas for improved O2 resistance and mediator affinity

    Get PDF
    Carbon monoxide (CO) harmful to most creatures, is largely discharged by industrial processes in steel mill and thermal power plant. Conversion of toxic waste CO gas to safe gas or more valuable chemicals will be a great worth at this point. Interestingly, carbons and high potential electrons from CO-oxidation can be resourced as essential core parts for the chemical products by using CO-dehydrogenase (CODH) and artificial mediator. For industrial application of the enzymatic CO-oxidation, however, key issues remain that most CODHs show oxygen (O2) sensitivity and low-affinity for artificial mediator. Because steel mill waste gas such as blast furnace gas (BFG) commonly contains a little O2 and higher affinity is required to achieve higher reaction rate. In this research, in-silico based approach was used to redesign Carboxydothermus hydrogenoformans CODH (ChCODH) II, capable of increasing O2 resistance and affinity to ethyl viologen (EV) mediator. ChCODHs belong to a group of Ni-Fe containing CODH. Among five known ChCODHs (ChCODH I-V), ChCODH II shows the highest activity toward CO but more O2 sensitive than ChCODH IV. The artificial mediator of EV functions as an electron acceptor for ChCODH II but the affinity of ChCODH II to EV mediator is known poor. As our result, more than 10 folds increase of O2 resistance was achieved for the redesigned ChCODH II enzyme, which will be definitely a working horse in the conversion of waste CO gas into value-added chemicals

    Plasmonic Terahertz Wave Detector Based on Silicon Field-Effect Transistors with Asymmetric Source and Drain Structures

    Get PDF
    In this paper, we present the validity and potential capacity of a modeling and simulation environment for the nonresonant plasmonic terahertz (THz) detector based on the silicon (Si) field-effect transistor (FET) with a technology computer-aided design (TCAD) platform. The nonresonant and "overdamped" plasma-wave behaviors have been modeled by introducing a quasi-plasma electron charge box as a two-dimensional electron gas (2DEG) in the channel region only around the source side of Si FETs. Based on the coupled nonresonant plasma-wave physics and continuity equation on the TCAD platform, the alternate-current (AC) signal as an incoming THz wave radiation successfully induced a direct-current (DC) drain-to-source output voltage as a detection signal in a sub-THz frequency regime under the asymmetric boundary conditions with a external capacitance between the gate and drain. The average propagation length and density of a quasi-plasma have been confirmed as around 100 nm and 1x10(19)/cm(3), respectively, through the transient simulation of Si FETs with the modulated 2DEG at 0.7 THz. We investigated the incoming radiation frequency dependencies on the characteristics of the plasmonic THz detector operating in sub-THz nonresonant regime by using the quasi-plasma modeling on TCAD platform. The simulated dependences of the photoresponse with quasi-plasma 2DEG modeling on the structural parameters such as gate length and dielectric thickness confirmed the operation principle of the nonresonant plasmonic THz detector in the Si PET structure. The proposed methodologies provide the physical design platform for developing novel plasmonic THz detectors operating in the nonresonant detection mode.open3

    Formation characteristics and photoluminescence of Ge nanocrystals in HfO[sub 2]

    No full text
    Genanocrystals (NCs) are shown to form within HfO₂ at relatively low annealing temperatures (600–700 °C) and to exhibit characteristic photoluminescence(PL) emission consistent with quantum confinement effects. After annealing at 600 °C, sample implanted with 8.4×10¹⁵ Ge cm⁻² show two major PL peaks, at 0.94 and 0.88 eV, which are attributed to no-phonon and transverse-optical phonon replica of Ge NCs, respectively. The intensity reaches a maximum for annealing temperatures around 700 °C and decreases at higher temperatures as the NC size continues to increase. The no-phonon emission also undergoes a significant redshift for temperatures above 800 °C. For fluences in the range from 8.4×1015 to 2.5×10¹⁶ cm⁻², the average NC size increases from ∼13.5±2.6 to ∼20.0±3.7 nm. These NC sizes are much larger than within amorphous SiO₂. Implanted Ge is shown to form Ge NCs within the matrix of monoclinic (m)-HfO₂ during thermal annealing with the orientation relationship of [101]m-HfO₂//[110]Ge NC.S.H.C. and R.G.E. acknowledge supports from the Korea Research Foundation Grant Grant No. KRF-2007-521- C00094 and from the Australian Research Council Discovery Project, respectively

    α-Syntrophin Modulates Myogenin Expression in Differentiating Myoblasts

    Get PDF
    α-Syntrophin is a scaffolding protein linking signaling proteins to the sarcolemmal dystrophin complex in mature muscle. However, α-syntrophin is also expressed in differentiating myoblasts during the early stages of muscle differentiation. In this study, we examined the relationship between the expression of α-syntrophin and myogenin, a key muscle regulatory factor.The absence of α-syntrophin leads to reduced and delayed myogenin expression. This conclusion is based on experiments using muscle cells isolated from α-syntrophin null mice, muscle regeneration studies in α-syntrophin null mice, experiments in Sol8 cells (a cell line that expresses only low levels of α-syntrophin) and siRNA studies in differentiating C2 cells. In primary cultured myocytes isolated from α-syntrophin null mice, the level of myogenin was less than 50% that from wild type myocytes (p<0.005) 40 h after differentiation induction. In regenerating muscle, the expression of myogenin in the α-syntrophin null muscle was reduced to approximately 25% that of wild type muscle (p<0.005). Conversely, myogenin expression is enhanced in primary cultures of myoblasts isolated from a transgenic mouse over-expressing α-syntrophin and in Sol8 cells transfected with a vector to over-express α-syntrophin. Moreover, we find that myogenin mRNA is reduced in the absence of α-syntrophin and increased by α-syntrophin over-expression. Immunofluorescence microscopy shows that α-syntrophin is localized to the nuclei of differentiating myoblasts. Finally, immunoprecipitation experiments demonstrate that α-syntrophin associates with Mixed-Lineage Leukemia 5, a regulator of myogenin expression.We conclude that α-syntrophin plays an important role in regulating myogenesis by modulating myogenin expression

    Plasma membrane localization of MLC1 regulates cellular morphology and motility

    Get PDF
    Background: Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare form of infantile-onset leukodystrophy. The disorder is caused primarily by mutations of MLC1 that leads to a series of phenotypic outcomes including vacuolation of myelin and astrocytes, subcortical cysts, brain edema, and macrocephaly. Recent studies have indicated that functional interactions among MLC1, GlialCAM, and ClC-2 channels play key roles in the regulation of neuronal, glial and vascular homeostasis. However, the physiological role of MLC1 in cellular homeostatic communication remains poorly understood. In the present study, we investigated the cellular function of MLC1 and its effects on cell-cell interactions. Methods: MLC1-dependent cellular morphology and motility were analyzed by using confocal and live cell imaging technique. Biochemical approaches such as immunoblotting, co-immunoprecipitation, and surface biotinylation were conducted to support data. Results: We found that the altered MLC1 expression and localization led to a great alteration in cellular morphology and motility through actin remodeling. MLC1 overexpression induced filopodia formation and suppressed motility. And, MLC1 proteins expressed in patient-derived MLC1 mutants resulted in trapping in the ER although no changes in morphology or motility were observed. Interestingly knockdown of Mlc1 induced Arp3-Cortactin interaction, lamellipodia formation, and increased the membrane ruffling of the astrocytes. These data indicate that subcellular localization of expressed MLC1 at the plasma membrane is critical for changes in actin dynamics through ARP2/3 complex. Thus, our results suggest that misallocation of pathogenic mutant MLC1 may disturbs the stable cell-cell communication and the homeostatic regulation of astrocytes in patients with MLC. © 2019 The Author(s).1
    corecore