7 research outputs found

    Top-down Control of Visual Alpha Oscillations: Sources of Control Signals and Their Mechanisms of Action

    Get PDF
    Alpha oscillations (8 to 12 Hz) are thought to inversely correlate with cortical excitability. Goal-oriented modulation of alpha has been studied extensively. In visual spatial attention, alpha over the region of visual cortex corresponding to the attended location decreases, signifying increased excitability to facilitate the processing of impending stimuli. In contrast, in retention of verbal working memory, alpha over visual cortex increases, signifying decreased excitability to gate out stimulus input to protect the information held online from sensory interference. According to the prevailing model, this goal-oriented biasing of sensory cortex is effected by top-down control signals from frontal and parietal cortices. The present study tests and substantiates this hypothesis by (a) identifying the signals that mediate the top-down biasing influence, (b) examining whether the cortical areas issuing these signals are task-specific or task-independent, and (c) establishing the possible mechanism of the biasing action. High-density human EEG data were recorded in two experimental paradigms: a trial-by-trial cued visual spatial attention task and a modified Sternberg working memory task. Applying Granger causality to both sensor-level and source-level data we report the following findings. In covert visual spatial attention, the regions exerting top-down control over visual activity are lateralized to the right hemisphere, with the dipoles located at the right frontal eye field (FEF) and the right inferior frontal gyrus (IFG) being the main sources of top-down influences. During retention of verbal working memory, the regions exerting top-down control over visual activity are lateralized to the left hemisphere, with the dipoles located at the left middle frontal gyrus (MFG) being the main source of top-down influences. In both experiments, top-down influences are mediated by alpha oscillations, and the biasing effect is likely achieved via an inhibition-disinhibition mechanism

    Identification and expression profile analysis of NUCLEAR FACTOR-Y families in Physcomitrella patens

    No full text
    NUCLEAR FACTOR Y transcription factors belong to a multimember family and consist of NF-YA/B/C subunits. Members of the NF-Y family have been reported to regulate physiological processes in plant. In this study, we identified and annotated two NF-YA, nine NF-B and twelve NF-YC proteins in the genome of Physcomitrella patens. Analyses of conserved domains demonstrated that PpNF-YA/B/C shared the same conserved domains with their orthologous proteins in Arabidopsis, O. sativa and mouse. Expression profiles indicated that PpNF-Ys were widely expressed in different tissues and developmental stages of P. patens throughout protonema and gametophores. The majority of PpNF-Y genes were responsive to abiotic stress via either ABA-independent or -dependent pathways. Some of ABA-regulated PpNF-Y expression were mediated by ABI3. To our knowledge, this study was the first to evaluate NF-Y families in Physcomitrella patens, and provides a foundation to dissect the function of PpNF-Ys

    Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides

    No full text
    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions

    Role of dopamine D2 receptors in optimizing choice strategy in a dynamic and uncertain environment

    Get PDF
    In order to investigate roles of dopamine receptor subtypes in reward-based learning, we examined choice behavior of dopamine D1 and D2 receptor-knockout (D1R-KO and D2R-KO, respectively) mice in an instrumental learning task with progressively increasing reversal frequency and a dynamic two-armed bandit task. Performance of D2R-KO mice was progressively impaired in the former as the frequency of reversal increased and profoundly impaired in the latter even with prolonged training, whereas D1R-KO mice showed relatively minor performance deficits. Choice behavior in the dynamic two-armed bandit task was well explained by a hybrid model including win-stay-lose-switch and reinforcement learning terms. A model-based analysis revealed increased win-stay, but impaired value updating and decreased value-dependent action selection in D2R-KO mice, which were detrimental to maximizing rewards in the dynamic two-armed bandit task. These results suggest an important role of dopamine D2 receptors in learning from past choice outcomes for rapid adjustment of choice behavior in a dynamic and uncertain environment

    Altered methylation and expression of ER-associated degradation factors in long-term alcohol and constitutive ER stress-induced murine hepatic tumors

    Get PDF
    Mortality from liver cancer in humans is increasingly attributable to heavy or long-term alcohol consumption. The mechanisms by which alcohol exerts its carcinogenic effect are not well understood. In this study, the role of alcohol-induced endoplasmic reticulum (ER) stress response in liver cancer development was investigated using an animal model with a liver knockout of the chaperone BiP and under constitutive hepatic ER stress. Long-term alcohol and high fat diet (HFD) feeding resulted in higher levels of serum alanine aminotransferase (ALT), impaired ER stress response, and higher incidence of liver tumor in older (aged 16 months) knockout females than in either middle-aged (6 months) knockouts or older (aged 16 months) wild type females. In the older knockout females, stronger effects of the alcohol on methylation of CpG islands at promoter regions of genes involved in the ER associated degradation (ERAD) were also detected. Altered expression of ERAD factors including derlin 3, Creld2 (cysteine-rich with EGF-like domains 2), Herpud1 (ubiquitin-like domain member), Wfs1 (wolfram syndrome gene), and Yod1 (deubiquinating enzyme 1) was co-present with decreased proteasome activities, increased estrogen receptor alpha variant (ERa36), and enhanced phosphorylations of ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) and STAT3 (the signal transducers and activators of transcription) in the older knockout female fed alcohol. Our results suggest that long-term alcohol consumption and ageing may promote liver tumorigenesis in females through interfering with DNA methylation and expression of genes involved in the ER associated degradation

    Differences in functional brain connectivity alterations associated with cerebral amyloid deposition in amnestic mild cognitive impairment

    Get PDF
    Despite potential implications for the early detection of impending AD, very little is known about the differences of large scale brain networks between amnestic MCI (aMCI) with high cerebral amyloid beta protein (Aβ) deposition (i.e., aMCI+) and aMCI with no or very little Aβ deposition (i.e., aMCI-). We first aimed to extend the current literature on altering intrinsic functional connectivity (FC) of the default mode network (DMN) and salience network (SN) from CN to AD dementia. Second, we further examined the differences of the DMN and the SN between aMCI-, aMCI+, and CN. Forty-three older adult (12 CN, 10 aMCI+, 10 aMCI-, and 11 AD dementia) subjects were included. All participants received clinical and neuropsychological assessment, resting state functional MRI, structural MRI, and Pittsburgh compound-B-PET scans. FC data were preprocessed using Multivariate Exploratory Linear Optimized Decomposition into Independent Components of FSL. Group comparisons were carried out using the dual-regression approach. In addition, to verify presence of grey matter (GM) volume changes with intrinsic functional network alterations, Voxel Based Morphometry was performed on the acquired T1-weighted data. As expected, AD dementia participants exhibited decreased FC in the DMN compared to CN (in precuneus and cingulate gyrus). The degree of alteration in the DMN in aMCI+ compared to CN was intermediate to that of AD. In contrast, aMCI- exhibited increased FC in the DMN compared to CN (in precuneus) as well as aMCI+. In terms of the SN, aMCI- exhibited decreased FC compared to both CN and aMCI+ particularly in the inferior frontal gyrus. FC within the SN in aMCI+ and AD did not differ from CN. Compared to CN, aMCI- showed atrophy in bilateral superior temporal gyri whereas aMCI+ showed atrophy in right precuneus. The results indicate that despite of the similarity in cross-sectional cognitive features aMCI- has quite different functional brain connectivity compared to aMCI+

    Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover

    Get PDF
    Soil salinity is an increasingly serious problem worldwide that reduces agricultural output potential. Selected beneficial soil bacteria can promote plant growth and augment tolerance to biotic and abiotic stresses. Bacillus subtilis strain GB03 has been shown to confer growth promotion and abiotic stress tolerance in the model plant Arabidopsis thaliana. Here we examined the effect of this beneficial soil bacterium on salt tolerance in the legume forage crop, white clover. Plants of white clover (Trifolium repens L. cultivar Huia) were grown from seeds with or without soil inoculation of the beneficial soil bacterium Bacillus subtilis GB03 supplemented with 0, 50, 100 or 150 mM NaCl water into soil. Growth parameters, chlorophyll content, malondialdehyde (MDA) content and osmotic potential were monitored during the growth cycle. Endogenous Na+ and K+ contents were determined at the time of harvest. White clover plants grown in GB03-inoculated soil were significantly larger than non-inoculated controls with respect to shoot height, root length, plant biomass, leaf area and chlorophyll content; leaf MDA content under saline condition and leaf osmotic potential under severe salinity condition (150 mM NaCl) were significantly decreased. Furthermore, GB03 significantly decreased shoot and root Na+ accumulation and thereby improved K+/Na+ ratio when GB03-inoculated plants were grown under elevated salt conditions. The results indicate that soil inoculation with GB03 promotes white clover growth under both non-saline and saline conditions by directly or indirectly regulating plant chlorophyll content, leaf osmotic potential, cell membrane integrity and ion accumulation
    corecore