20,080 research outputs found

    On the Optimal Linear Convergence Rate of a Generalized Proximal Point Algorithm

    Full text link
    The proximal point algorithm (PPA) has been well studied in the literature. In particular, its linear convergence rate has been studied by Rockafellar in 1976 under certain condition. We consider a generalized PPA in the generic setting of finding a zero point of a maximal monotone operator, and show that the condition proposed by Rockafellar can also sufficiently ensure the linear convergence rate for this generalized PPA. Indeed we show that these linear convergence rates are optimal. Both the exact and inexact versions of this generalized PPA are discussed. The motivation to consider this generalized PPA is that it includes as special cases the relaxed versions of some splitting methods that are originated from PPA. Thus, linear convergence results of this generalized PPA can be used to better understand the convergence of some widely used algorithms in the literature. We focus on the particular convex minimization context and specify Rockafellar's condition to see how to ensure the linear convergence rate for some efficient numerical schemes, including the classical augmented Lagrangian method proposed by Hensen and Powell in 1969 and its relaxed version, the original alternating direction method of multipliers (ADMM) by Glowinski and Marrocco in 1975 and its relaxed version (i.e., the generalized ADMM by Eckstein and Bertsekas in 1992). Some refined conditions weaker than existing ones are proposed in these particular contexts.Comment: 22 pages, 1 figur

    Statistical Mechanical Treatments of Protein Amyloid Formation

    Full text link
    Protein aggregation is an important field of investigation because it is closely related to the problem of neurodegenerative diseases, to the development of biomaterials, and to the growth of cellular structures such as cyto-skeleton. Self-aggregation of protein amyloids, for example, is a complicated process involving many species and levels of structures. This complexity, however, can be dealt with using statistical mechanical tools, such as free energies, partition functions, and transfer matrices. In this article, we review general strategies for studying protein aggregation using statistical mechanical approaches and show that canonical and grand canonical ensembles can be used in such approaches. The grand canonical approach is particularly convenient since competing pathways of assembly and dis-assembly can be considered simultaneously. Another advantage of using statistical mechanics is that numerically exact solutions can be obtained for all of the thermodynamic properties of fibrils, such as the amount of fibrils formed, as a function of initial protein concentration. Furthermore, statistical mechanics models can be used to fit experimental data when they are available for comparison.Comment: Accepted to IJM

    A Statistical Mechanical Approach to Protein Aggregation

    Full text link
    We develop a theory of aggregation using statistical mechanical methods. An example of a complicated aggregation system with several levels of structures is peptide/protein self-assembly. The problem of protein aggregation is important for the understanding and treatment of neurodegenerative diseases and also for the development of bio-macromolecules as new materials. We write the effective Hamiltonian in terms of interaction energies between protein monomers, protein and solvent, as well as between protein filaments. The grand partition function can be expressed in terms of a Zimm-Bragg-like transfer matrix, which is calculated exactly and all thermodynamic properties can be obtained. We start with two-state and three-state descriptions of protein monomers using Potts models that can be generalized to include q-states, for which the exactly solvable feature of the model remains. We focus on n X N lattice systems, corresponding to the ordered structures observed in some real fibrils. We have obtained results on nucleation processes and phase diagrams, in which a protein property such as the sheet content of aggregates is expressed as a function of the number of proteins on the lattice and inter-protein or interfacial interaction energies. We have applied our methods to A{\beta}(1-40) and Curli fibrils and obtained results in good agreement with experiments.Comment: 13 pages, 8 figures, accepted to J. Chem. Phy

    Exactly Solvable Model for Helix-Coil-Sheet Transitions in Protein Systems

    Full text link
    In view of the important role helix-sheet transitions play in protein aggregation, we introduce a simple model to study secondary structural transitions of helix-coil-sheet systems using a Potts model starting with an effective Hamiltonian. This energy function depends on four parameters that approximately describe entropic and enthalpic contributions to the stability of a polypeptide in helical and sheet conformations. The sheet structures involve long-range interactions between residues which are far in sequence, but are in contact in real space. Such contacts are included in the Hamiltonian. Using standard statistical mechanical techniques, the partition function is solved exactly using transfer matrices. Based on this model, we study thermodynamic properties of polypeptides, including phase transitions between helix, sheet, and coil structures.Comment: Updated version with correction
    • …
    corecore