11,242 research outputs found

    Communication-Computation Efficient Gradient Coding

    Full text link
    This paper develops coding techniques to reduce the running time of distributed learning tasks. It characterizes the fundamental tradeoff to compute gradients (and more generally vector summations) in terms of three parameters: computation load, straggler tolerance and communication cost. It further gives an explicit coding scheme that achieves the optimal tradeoff based on recursive polynomial constructions, coding both across data subsets and vector components. As a result, the proposed scheme allows to minimize the running time for gradient computations. Implementations are made on Amazon EC2 clusters using Python with mpi4py package. Results show that the proposed scheme maintains the same generalization error while reducing the running time by 32%32\% compared to uncoded schemes and 23%23\% compared to prior coded schemes focusing only on stragglers (Tandon et al., ICML 2017)

    Polar Codes for Distributed Hierarchical Source Coding

    Full text link
    We show that polar codes can be used to achieve the rate-distortion functions in the problem of hierarchical source coding also known as the successive refinement problem. We also analyze the distributed version of this problem, constructing a polar coding scheme that achieves the rate distortion functions for successive refinement with side information.Comment: 14 page

    Universal Source Polarization and an Application to a Multi-User Problem

    Full text link
    We propose a scheme that universally achieves the smallest possible compression rate for a class of sources with side information, and develop an application of this result for a joint source channel coding problem over a broadcast channel.Comment: to be presented at Allerton 201

    Error correction based on partial information

    Full text link
    We consider the decoding of linear and array codes from errors when we are only allowed to download a part of the codeword. More specifically, suppose that we have encoded kk data symbols using an (n,k)(n,k) code with code length nn and dimension k.k. During storage, some of the codeword coordinates might be corrupted by errors. We aim to recover the original data by reading the corrupted codeword with a limit on the transmitting bandwidth, namely, we can only download an α\alpha proportion of the corrupted codeword. For a given α,\alpha, our objective is to design a code and a decoding scheme such that we can recover the original data from the largest possible number of errors. A naive scheme is to read αn\alpha n coordinates of the codeword. This method used in conjunction with MDS codes guarantees recovery from any ⌊(αn−k)/2⌋\lfloor(\alpha n-k)/2\rfloor errors. In this paper we show that we can instead read an α\alpha proportion from each of the codeword's coordinates. For a well-designed MDS code, this method can guarantee recovery from ⌊(n−k/α)/2⌋\lfloor (n-k/\alpha)/2 \rfloor errors, which is 1/α1/\alpha times more than the naive method, and is also the maximum number of errors that an (n,k)(n,k) code can correct by downloading only an α\alpha proportion of the codeword. We present two families of such optimal constructions and decoding schemes. One is a Reed-Solomon code with evaluation points in a subfield and the other is based on Folded Reed-Solomon codes. We further show that both code constructions attain asymptotically optimal list decoding radius when downloading only a part of the corrupted codeword. We also construct an ensemble of random codes that with high probability approaches the upper bound on the number of correctable errors when the decoder downloads an α\alpha proportion of the corrupted codeword.Comment: Extended version of the conference paper in ISIT 201
    • …
    corecore