999 research outputs found

    Description of the Diadegma fenestrale (Hymenoptera: Ichneumonidae: Campopleginae) Attacking the Potato Tuber Moth, Phthorimaea operculella (Lep.: Gelechiidae) New to Korea

    Get PDF
    Diadegma fenestrale is known as a parasitoid of the potato tuber moth, Phthorimaea operculella. The potato tuber moth, Phthorimaea operculella (Zeller) is one of the most destructive pest of potatoes. Also, we found this species attacking the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Ratio of parasitism is 20-30% and cocoon of lepidopteran was parasitic ichneumonid species after 3 days. This species and the genus Diadegma are recorded for the first time from Korea. In this paper, description of the parasitoid and photographs of the diagnostic characteristics are provided

    Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice

    Get PDF
    Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20 μM suppressed the LPS-induced IL-8 production through the TLR4 activation, inhibiting eotaxin-1 induction. The in vivo study explored the demoting effects of kaempferol on asthmatic inflammation in BALB/c mice sensitized with ovalbumin (OVA). Mouse macrophage inflammatory protein-2 production and CXCR2 expression were upregulated in OVA-challenged mice, which was attenuated by oral administration of ≥10 mg/kg kaempferol. Kaempferol allayed the airway tissue levels of eotaxin-1 and eotaxin receptor CCR3 enhanced by OVA challenge. This study further explored the blockade of Tyk-STAT signaling by kaempferol in both LPS-stimulated BEAS-2B cells and OVA-challenged mice. LPS activated Tyk2 responsible for eotaxin-1 induction, while kaempferol dose-dependently inhibited LPS- or IL-8-inflamed Tyk2 activation. Similar inhibition of Tyk2 activation by kaempferol was observed in OVA-induced mice. Additionally, LPS stimulated the activation of STAT1/3 signaling concomitant with downregulated expression of Tyk-inhibiting SOCS3. In contrast, kaempferol encumbered STAT1/3 signaling with restoration of SOCS3 expression. Consistently, oral administration of kaempferol blocked STAT3 transactivation elevated by OVA challenge. These results demonstrate that kaempferol alleviated airway inflammation through modulating Tyk2-STAT1/3 signaling responsive to IL-8 in endotoxin-exposed airway epithelium and in asthmatic mice. Therefore, kaempferol may be a therapeutic agent targeting asthmatic diseases

    Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1), and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood.</p> <p>Results</p> <p>In the present study, we show that Distal-less 2 (Dlx-2), a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS) in response to glucose deprivation (GD), one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an <it>in vitro </it>model of solid tumors. Dlx-2 short hairpin RNA (shRNA) inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH) release, indicating the important role(s) of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis.</p> <p>Conclusions</p> <p>These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.</p

    A multicenter, prospective, randomized, controlled trial evaluating the safety and efficacy of intracoronary cell infusion mobilized with granulocyte colony-stimulating factor and darbepoetin after acute myocardial infarction: study design and rationale of the 'MAGIC cell-5-combination cytokine trial'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow derived stem/progenitor cell transplantation after acute myocardial infarction is safe and effective for improving left ventricular systolic function. However, the improvement of left ventricular systolic function is limited. This study will evaluate novel stem/progenitor cell therapy with combination cytokine treatment of the long-acting erythropoietin analogue, darbepoetin, and granulocyte colony-stimulating factor (G-CSF) in patients with acute myocardial infarction.</p> <p>Methods</p> <p>The 'MAGIC Cell-5-Combination Cytokine Trial' is a multicenter, prospective, randomized, 3-arm, controlled trial with blind evaluation of the endpoints. A total of 116 patients will randomly receive one of the following three treatments: an intravenous darbepoetin infusion and intracoronary infusion of peripheral blood stem cells mobilized with G-CSF (n = 58), an intracoronary infusion of peripheral blood stem cells mobilized with G-CSF alone (n = 29), or conventional therapy (n = 29) at phase I. Patients with left ventricular ejection fraction < 45% at 6 months, in the patients who received stem cell therapy at phase I, will receive repeated cell therapy at phase II. The objectives of this study are to evaluate the safety and efficacy of combination cytokine therapy with erythropoietin and G-CSF (phase I) and repeated progenitor/stem cell treatment (phase II).</p> <p>Discussion</p> <p>This is the first study to evaluate the safety and efficacy of combination cytokine based progenitor/stem cell treatment.</p> <p>Trial registration</p> <p><url>http://www.ClinicalTrials.gov</url> identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00501917">NCT00501917</a>.</p
    corecore