1,178 research outputs found

    Direct and Indirect Detection of Neutralino Dark Matter and Collider Signatures in an SO(10)SO(10) Model with Two Intermediate Scales

    Full text link
    We investigate the detectability of neutralino Dark Matter via direct and indirect searches as well as collider signatures of an SO(10)SO(10) model with two intermediate scales. We compare the direct Dark Matter detection cross section and the muon flux due to neutralino annihilation in the Sun that we obtain in this model with mSUGRA predictions and with the sensitivity of current and future experiments. In both cases, we find that the detectability improves as the model deviates more from mSUGRA. In order to study collider signatures, we choose two benchmark points that represent the main phenomenological features of the model: a lower value of ∣μ∣|\mu| and reduced third generation sfermion masses due to extra Yukawa coupling contributions in the Renormalization Group Equations, and increased first and second generation slepton masses due to new gaugino loop contributions. We show that measurements at the LHC can distinguish this model from mSUGRA in both cases, by counting events containing leptonically decaying Z0Z^0 bosons, heavy neutral Higgs bosons, or like--sign lepton pairs.Comment: 21 pages, 16 figure

    Description of the Diadegma fenestrale (Hymenoptera: Ichneumonidae: Campopleginae) Attacking the Potato Tuber Moth, Phthorimaea operculella (Lep.: Gelechiidae) New to Korea

    Get PDF
    Diadegma fenestrale is known as a parasitoid of the potato tuber moth, Phthorimaea operculella. The potato tuber moth, Phthorimaea operculella (Zeller) is one of the most destructive pest of potatoes. Also, we found this species attacking the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Ratio of parasitism is 20-30% and cocoon of lepidopteran was parasitic ichneumonid species after 3 days. This species and the genus Diadegma are recorded for the first time from Korea. In this paper, description of the parasitoid and photographs of the diagnostic characteristics are provided

    Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice

    Get PDF
    Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20 μM suppressed the LPS-induced IL-8 production through the TLR4 activation, inhibiting eotaxin-1 induction. The in vivo study explored the demoting effects of kaempferol on asthmatic inflammation in BALB/c mice sensitized with ovalbumin (OVA). Mouse macrophage inflammatory protein-2 production and CXCR2 expression were upregulated in OVA-challenged mice, which was attenuated by oral administration of ≥10 mg/kg kaempferol. Kaempferol allayed the airway tissue levels of eotaxin-1 and eotaxin receptor CCR3 enhanced by OVA challenge. This study further explored the blockade of Tyk-STAT signaling by kaempferol in both LPS-stimulated BEAS-2B cells and OVA-challenged mice. LPS activated Tyk2 responsible for eotaxin-1 induction, while kaempferol dose-dependently inhibited LPS- or IL-8-inflamed Tyk2 activation. Similar inhibition of Tyk2 activation by kaempferol was observed in OVA-induced mice. Additionally, LPS stimulated the activation of STAT1/3 signaling concomitant with downregulated expression of Tyk-inhibiting SOCS3. In contrast, kaempferol encumbered STAT1/3 signaling with restoration of SOCS3 expression. Consistently, oral administration of kaempferol blocked STAT3 transactivation elevated by OVA challenge. These results demonstrate that kaempferol alleviated airway inflammation through modulating Tyk2-STAT1/3 signaling responsive to IL-8 in endotoxin-exposed airway epithelium and in asthmatic mice. Therefore, kaempferol may be a therapeutic agent targeting asthmatic diseases

    Lack of prognostic significance for major adverse cardiac events of soluble suppression of tumorigenicity 2 levels in patients with ST-segment elevation myocardial infarction

    Get PDF
    Background: Elevation of soluble suppression of tumorigenicity 2 (sST2) is associated with cardiac fibrosis and hypertrophy. Under investigation herein, was whether sST2 level is associated with major adverse cardiac events (MACE) and left ventricular (LV) remodeling after primary percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI). Methods: In total, this study included 184 patients who underwent successful primary PCI. A subsequent guideline-based medical follow-up was included (61.4 ± 11.8 years old, 85% male, 21% with Killip class ≥ I). sST2 concentration correlations with echocardiographic, angiographic, laboratory parameters, and clinical outcomes in STEMI patients were evaluated. Results: The median sST2 level was 60.3 ng/mL; 6 (3.2%) deaths occurred within 1 year. The sST2 level correlated with LV ejection fraction (LVEF) changes from baseline to 6 months (r= –0.273; p = 0.006) after adjustment for echocardiographic parameters including wall motions score index (WMSI). Recovery of LVEF at 6 months was highest in the tertile 1 group (Δ6 months – baseline LVEF; tertile 1, p = 0.001; tertile 2, p = 0.319; tertile 3, p = 0.205). The decrease in WMSI at 6 months was greater in the tertiles 1 and 2 groups than in the tertile 3 group (Δ6 months – baseline WMSI; tertile 1, p = 0.001; tertile 2, p = 0.013; tertile 3, p = 0.055). There was no association between sST2 levels and short-term (log rank p = 0.598) and long-term (p = 0.596) MACE. Conclusions: sST2 concentration have predictive value for LV remodeling on echocardiography in patients with STEMI who underwent primary PCI. However, sST2 concentration was not associated with short-term and long-term MACE

    Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1), and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood.</p> <p>Results</p> <p>In the present study, we show that Distal-less 2 (Dlx-2), a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS) in response to glucose deprivation (GD), one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an <it>in vitro </it>model of solid tumors. Dlx-2 short hairpin RNA (shRNA) inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH) release, indicating the important role(s) of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis.</p> <p>Conclusions</p> <p>These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.</p
    • …
    corecore