13,285 research outputs found

    Electronic structures of antiperovskite superconductors: MgXNi3_3 (X=B,C,N)

    Full text link
    We have investigated electronic structures of a newly discovered antiperovskite superconductor MgCNi3_3 and related compounds MgBNi3_3 and MgNNi3_3. In MgCNi3_3, a peak of very narrow and high density of states is located just below EF\rm E_F, which corresponds to the Ο€βˆ—\pi^* antibonding state of Ni-3d and C-2p2p but with the predominant Ni-3d character. The prominent nesting feature is observed in the Ξ“\Gamma-centered electron Fermi surface of an octahedron-cage-like shape that originates from the 19th band. The estimated superconducting parameters based on the simple rigid-ion approximation are in reasonable agreement with experiment, suggesting that the superconductivity in MgCNi3_3 is described well by the conventional phonon mechanism.Comment: 5 pages, 5 figure

    Electronic Structures of Antiperovskite Superconductor MgCNi3_3 and Related Compounds

    Full text link
    Electronic structure of a newly discovered antiperovskite superconductor MgCNi3_3 is investigated by using the LMTO band method. The main contribution to the density of states (DOS) at the Fermi energy EFE_{\rm F} comes from Ni 3dd states which are hybridized with C 2pp states. The DOS at EFE_{\rm F} is varied substantially by the hole or electron doping due to the very high and narrow DOS peak located just below EFE_{\rm F}. We have also explored electronic structures of C-site and Mg-site doped MgCNi3_3 systems, and described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai, JAPAN

    Electronic structure of metallic antiperovskite compound GaCMn3_3

    Full text link
    We have investigated electronic structures of antiperovskite GaCMn3_3 and related Mn compounds SnCMn3_3, ZnCMn3_3, and ZnNMn3_3. In the paramagnetic state of GaCMn3_3, the Fermi surface nesting feature along the Ξ“R\Gamma{\rm R} direction is observed, which induces the antiferromagnetic (AFM) spin ordering with the nesting vector {\bf Q} βˆΌΞ“R\sim \Gamma{\rm R}. Calculated susceptibilities confirm the nesting scenario for GaCMn3_3 and also explain various magnetic structures of other antiperovskite compounds. Through the band folding effect, the AFM phase of GaCMn3_3 is stabilized. Nearly equal densities of states at the Fermi level in the ferromagnetic and AFM phases of GaCMn3_3 indicate that two phases are competing in the ground state.Comment: 4 pages, 5 figure
    • …
    corecore