12,436 research outputs found

    Full-counting statistics of charge and spin transport in the transient regime: A nonequilibrium Green's function approach

    Get PDF
    We report the investigation of full-counting statistics (FCS) of transferred charge and spin in the transient regime where the connection between central scattering region (quantum dot) and leads are turned on at t=0t=0. A general theoretical formulation for the generating function (GF) is presented using a nonequilibrium Green's function approach for the quantum dot system. In particular, we give a detailed derivation on how to use the method of path integral together with nonequilibrium Green's function technique to obtain the GF of FCS in electron transport systems based on the two-time quantum measurement scheme. The correct long-time limit of the formalism, the Levitov-Lesovik's formula, is obtained. This formalism can be generalized to account for spin transport for the system with noncollinear spin as well as spin-orbit interaction. As an example, we have calculated the GF of spin-polarized transferred charge, transferred spin, as well as the spin transferred torque for a magnetic tunneling junction in the transient regime. The GF is compactly expressed by a functional determinant represented by Green's function and self-energy in the time domain. With this formalism, FCS in spintronics in the transient regime can be studied. We also extend this formalism to the quantum point contact system. For numerical results, we calculate the GF and various cumulants of a double quantum dot system connected by two leads in transient regime. The signature of universal oscillation of FCS is identified. On top of the global oscillation, local oscillations are found in various cumulants as a result of the Rabi oscillation. Finally, the influence of the temperature is also examined

    Exploiting Amplitude Control in Intelligent Reflecting Surface Aided Wireless Communication with Imperfect CSI

    Full text link
    Intelligent reflecting surface (IRS) is a promising new paradigm to achieve high spectral and energy efficiency for future wireless networks by reconfiguring the wireless signal propagation via passive reflection. To reap the potential gains of IRS, channel state information (CSI) is essential, whereas channel estimation errors are inevitable in practice due to limited channel training resources. In this paper, in order to optimize the performance of IRS-aided multiuser systems with imperfect CSI, we propose to jointly design the active transmit precoding at the access point (AP) and passive reflection coefficients of IRS, each consisting of not only the conventional phase shift and also the newly exploited amplitude variation. First, the achievable rate of each user is derived assuming a practical IRS channel estimation method, which shows that the interference due to CSI errors is intricately related to the AP transmit precoders, the channel training power and the IRS reflection coefficients during both channel training and data transmission. Then, for the single-user case, by combining the benefits of the penalty method, Dinkelbach method and block successive upper-bound minimization (BSUM) method, a new penalized Dinkelbach-BSUM algorithm is proposed to optimize the IRS reflection coefficients for maximizing the achievable data transmission rate subjected to CSI errors; while for the multiuser case, a new penalty dual decomposition (PDD)-based algorithm is proposed to maximize the users' weighted sum-rate. Simulation results are presented to validate the effectiveness of our proposed algorithms as compared to benchmark schemes. In particular, useful insights are drawn to characterize the effect of IRS reflection amplitude control (with/without the conventional phase shift) on the system performance under imperfect CSI.Comment: 15 pages, 10 figures, accepted by IEEE Transactions on Communication
    • …
    corecore