5,424 research outputs found

    Fluid Pressure-Activated Non-Selective Cation Current and Cl- Current in Rat Atrial Myocytes

    Get PDF

    Deficits of case marker processing in persons with mild cognitive impairment

    Get PDF
    The purpose of the current study was to investigate whether persons with mild cognitive impairment (MCI) showed deficits in processing case markers compared to normal elderly adults (NEA). Results revealed that individuals with MCI presented significantly lower accuracy than the NEA group on a case marker processing (CMP) task. Both groups showed greater difficulties in the passive sentences than sentences with the transitive verbs. The current results suggested that individuals with early stage of dementia started presenting deficits in case marker processing compared to the control group

    Transient cortical visual impairment after video-assisted thoracic surgery: a case report

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background Visual loss associated with thoracic surgery has been reported mostly after coronary angiography or bypass surgery. The position of video-assisted thoracic surgery (VATS) is usually lateral, thus not compressive to the globe. Visual loss after VATS has not been reported. Herein we report a patient without any cardiovascular risk factors who experienced transient cortical blindness after an uneventful VATS. Case presentation A 40-year-old man noticed a visual loss at the recovery room after VATS. He showed normal pupillary reflex, normal optic disc appearance, and homonymous hemianopia respecting the vertical meridian, thus was typical for cortical visual impairment. Conclusions Transient cortical visual impairment could be encountered after an uneventful VATS in a patient without any cardiovascular risk factors

    Mesenchymal Stem Cell-Extracellular Vesicle Therapy for Stroke: Scalable Production and Imaging Biomarker Studies

    Get PDF
    A major clinical hurdle to translate MSC-derived extracellular vesicles (EVs) is the lack of a method to scale-up the production of EVs with customized therapeutic properties. In this study, we tested whether EV production by a scalable 3D-bioprocessing method is feasible and improves neuroplasticity in animal models of stroke using MRI study. MSCs were cultured in a 3D-spheroid using a micro-patterned well. The EVs were isolated with filter and tangential flow filtration and characterized using electron microscopy, nanoparticle tracking analysis, and small RNA sequencing. Compared to conventional 2D culture, the production-reproduction of EVs (the number/size of particles and EV purity) obtained from 3D platform were more consistent among different lots from the same donor and among different donors. Several microRNAs with molecular functions associated with neurogenesis were upregulated in EVs obtained from 3D platform. EVs induced both neurogenesis and neuritogenesis via microRNAs (especially, miR-27a-3p and miR-132-3p)-mediated actions. EV therapy improved functional recovery on behavioral tests and reduced infarct volume on MRI in stroke models. The dose of MSC-EVs of 1/30 cell dose had similar therapeutic effects. In addition, the EV group had better anatomical and functional connectivity on diffusion tensor imaging and resting-state functional MRI in a mouse stroke model. This study shows that clinical-scale MSC-EV therapeutics are feasible, cost-effective, and improve functional recovery following experimental stroke, with a likely contribution from enhanced neurogenesis and neuroplasticity
    corecore