1,914 research outputs found
Static Analysis of Run-Time Errors in Embedded Real-Time Parallel C Programs
We present a static analysis by Abstract Interpretation to check for run-time
errors in parallel and multi-threaded C programs. Following our work on
Astr\'ee, we focus on embedded critical programs without recursion nor dynamic
memory allocation, but extend the analysis to a static set of threads
communicating implicitly through a shared memory and explicitly using a finite
set of mutual exclusion locks, and scheduled according to a real-time
scheduling policy and fixed priorities. Our method is thread-modular. It is
based on a slightly modified non-parallel analysis that, when analyzing a
thread, applies and enriches an abstract set of thread interferences. An
iterator then re-analyzes each thread in turn until interferences stabilize. We
prove the soundness of our method with respect to the sequential consistency
semantics, but also with respect to a reasonable weakly consistent memory
semantics. We also show how to take into account mutual exclusion and thread
priorities through a partitioning over an abstraction of the scheduler state.
We present preliminary experimental results analyzing an industrial program
with our prototype, Th\'es\'ee, and demonstrate the scalability of our
approach
A Static Analyzer for Large Safety-Critical Software
We show that abstract interpretation-based static program analysis can be
made efficient and precise enough to formally verify a class of properties for
a family of large programs with few or no false alarms. This is achieved by
refinement of a general purpose static analyzer and later adaptation to
particular programs of the family by the end-user through parametrization. This
is applied to the proof of soundness of data manipulation operations at the
machine level for periodic synchronous safety critical embedded software. The
main novelties are the design principle of static analyzers by refinement and
adaptation through parametrization, the symbolic manipulation of expressions to
improve the precision of abstract transfer functions, the octagon, ellipsoid,
and decision tree abstract domains, all with sound handling of rounding errors
in floating point computations, widening strategies (with thresholds, delayed)
and the automatic determination of the parameters (parametrized packing)
A Logical Product Approach to Zonotope Intersection
We define and study a new abstract domain which is a fine-grained combination
of zonotopes with polyhedric domains such as the interval, octagon, linear
templates or polyhedron domain. While abstract transfer functions are still
rather inexpensive and accurate even for interpreting non-linear computations,
we are able to also interpret tests (i.e. intersections) efficiently. This
fixes a known drawback of zonotopic methods, as used for reachability analysis
for hybrid sys- tems as well as for invariant generation in abstract
interpretation: intersection of zonotopes are not always zonotopes, and there
is not even a best zonotopic over-approximation of the intersection. We
describe some examples and an im- plementation of our method in the APRON
library, and discuss some further in- teresting combinations of zonotopes with
non-linear or non-convex domains such as quadratic templates and maxplus
polyhedra
Interval Slopes as Numerical Abstract Domain for Floating-Point Variables
The design of embedded control systems is mainly done with model-based tools
such as Matlab/Simulink. Numerical simulation is the central technique of
development and verification of such tools. Floating-point arithmetic, that is
well-known to only provide approximated results, is omnipresent in this
activity. In order to validate the behaviors of numerical simulations using
abstract interpretation-based static analysis, we present, theoretically and
with experiments, a new partially relational abstract domain dedicated to
floating-point variables. It comes from interval expansion of non-linear
functions using slopes and it is able to mimic all the behaviors of the
floating-point arithmetic. Hence it is adapted to prove the absence of run-time
errors or to analyze the numerical precision of embedded control systems
Logahedra: A new weakly relational domain
Weakly relational numeric domains express restricted classes of linear inequalities that strike a balance between what can be described and what can be efficiently computed. Popular weakly relational domains such as bounded differences and octagons have found application in model checking and abstract interpretation. This paper introduces logahedra, which are more expressiveness than octagons, but less expressive than arbitrary systems of two variable per inequality constraints. Logahedra allow coefficients of inequalities to be powers of two whilst retaining many of the desirable algorithmic properties of octagons
Symbolic Partial-Order Execution for Testing Multi-Threaded Programs
We describe a technique for systematic testing of multi-threaded programs. We
combine Quasi-Optimal Partial-Order Reduction, a state-of-the-art technique
that tackles path explosion due to interleaving non-determinism, with symbolic
execution to handle data non-determinism. Our technique iteratively and
exhaustively finds all executions of the program. It represents program
executions using partial orders and finds the next execution using an
underlying unfolding semantics. We avoid the exploration of redundant program
traces using cutoff events. We implemented our technique as an extension of
KLEE and evaluated it on a set of large multi-threaded C programs. Our
experiments found several previously undiscovered bugs and undefined behaviors
in memcached and GNU sort, showing that the new method is capable of finding
bugs in industrial-size benchmarks.Comment: Extended version of a paper presented at CAV'2
A simple abstraction of arrays and maps by program translation
We present an approach for the static analysis of programs handling arrays,
with a Galois connection between the semantics of the array program and
semantics of purely scalar operations. The simplest way to implement it is by
automatic, syntactic transformation of the array program into a scalar program
followed analysis of the scalar program with any static analysis technique
(abstract interpretation, acceleration, predicate abstraction,.. .). The
scalars invariants thus obtained are translated back onto the original program
as universally quantified array invariants. We illustrate our approach on a
variety of examples, leading to the " Dutch flag " algorithm
Interprocedural Reachability for Flat Integer Programs
We study programs with integer data, procedure calls and arbitrary call
graphs. We show that, whenever the guards and updates are given by octagonal
relations, the reachability problem along control flow paths within some
language w1* ... wd* over program statements is decidable in Nexptime. To
achieve this upper bound, we combine a program transformation into the same
class of programs but without procedures, with an Np-completeness result for
the reachability problem of procedure-less programs. Besides the program, the
expression w1* ... wd* is also mapped onto an expression of a similar form but
this time over the transformed program statements. Several arguments involving
context-free grammars and their generative process enable us to give tight
bounds on the size of the resulting expression. The currently existing gap
between Np-hard and Nexptime can be closed to Np-complete when a certain
parameter of the analysis is assumed to be constant.Comment: 38 pages, 1 figur
Improving Strategies via SMT Solving
We consider the problem of computing numerical invariants of programs by
abstract interpretation. Our method eschews two traditional sources of
imprecision: (i) the use of widening operators for enforcing convergence within
a finite number of iterations (ii) the use of merge operations (often, convex
hulls) at the merge points of the control flow graph. It instead computes the
least inductive invariant expressible in the domain at a restricted set of
program points, and analyzes the rest of the code en bloc. We emphasize that we
compute this inductive invariant precisely. For that we extend the strategy
improvement algorithm of [Gawlitza and Seidl, 2007]. If we applied their method
directly, we would have to solve an exponentially sized system of abstract
semantic equations, resulting in memory exhaustion. Instead, we keep the system
implicit and discover strategy improvements using SAT modulo real linear
arithmetic (SMT). For evaluating strategies we use linear programming. Our
algorithm has low polynomial space complexity and performs for contrived
examples in the worst case exponentially many strategy improvement steps; this
is unsurprising, since we show that the associated abstract reachability
problem is Pi-p-2-complete
Succinct Representations for Abstract Interpretation
Abstract interpretation techniques can be made more precise by distinguishing
paths inside loops, at the expense of possibly exponential complexity.
SMT-solving techniques and sparse representations of paths and sets of paths
avoid this pitfall. We improve previously proposed techniques for guided static
analysis and the generation of disjunctive invariants by combining them with
techniques for succinct representations of paths and symbolic representations
for transitions based on static single assignment. Because of the
non-monotonicity of the results of abstract interpretation with widening
operators, it is difficult to conclude that some abstraction is more precise
than another based on theoretical local precision results. We thus conducted
extensive comparisons between our new techniques and previous ones, on a
variety of open-source packages.Comment: Static analysis symposium (SAS), Deauville : France (2012
- …
