43 research outputs found

    Acute- or Subacute-Onset Lung Complications in Treating Patients With Rheumatoid Arthritis

    Get PDF
    AbstractRheumatoid arthritis (RA) is a common systemic disease that manifests as inflammatory arthritis of multiple joints and produces a wide variety of intrathoracic lesions, including pleural diseases, diffuse interstitial pneumonia, rheumatoid nodules, and airway disease. Patients treated for RA can have associated lung disease that commonly manifests as diffuse interstitial pneumonia, drug-induced lung injury, and infection. The purpose of this pictorial review is to illustrate the radiographic and clinical features of lung complications of acute or subacute onset in patients treated for RA and to show the computed tomography features of these complications

    Autoantibodies specific for different isoforms of CD45 in systemic lupus erythematosus

    Get PDF
    Nearly one-third of IgM antilymphocyte autoantibody-positive sera from patients with systemic lupus erythematosus (SLE) contain IgM antibodies to one or more 180-220-kD molecules (p180, p190, p205, and p220) in blots of glycoproteins purified from T cells by wheat germ agglutinin affinity chromatography. Identity of these IgM targets with multiple isoforms of CD45 was established by their specific depletion from T cell glycoproteins by immunoprecipitation with T191, a monoclonal antibody (mAb) that reacts with an epitope common to all CD45 isoforms. Although the anti-CD45 autoantibodies recognize higher molecular weight isoforms primarily, antigenic specificity in this system is quite heterogeneous and includes multiple distinct CD45 isoforms on different types of T cells that are, at least in part, different from those reactive with mAbs 2H4 and UCHL-1. Because CD45 is a major membrane protein tyrosine phosphatase that plays a critical role in antigen- induced T cell activation, the present data may be relevant to some of the antilymphocyte antibody-mediated immunologic abnormalities that characterize SLE and related autoimmune diseases

    Constitutive expression of a groEL-related protein on the surface of human gamma/delta cells

    Get PDF
    Rabbit antibodies to hsp58 (P1), the human homologue of the Escherichia coli stress protein groEL, react specifically in indirect immunofluorescence and complement-dependent microcytoxicity experiments with a cell surface antigen expressed constitutively by T cell lines bearing gamma/delta receptors. This anti-hsp58-reactive antigen is not demonstrable on T cells that express alpha/beta receptors or on various cells that lack T cell receptors. Certain evidence was obtained to suggest that the target antigen on the surface of gamma/delta T cells is a approximately 77-kD protein distinct from intracellular hsp58 and known members of the hsp70 stress protein family. While the exact nature and significance of this anti-hsp58-reactive protein remain to be determined, these data may help to clarify the roles of groEL- related stress proteins and gamma/delta cells that recognize groEL homologous in immunologic defense against infection and in autoimmune disease

    11)成人Still病の診断と治療

    No full text

    Matrix Metalloproteinase Gene Activation Resulting from Disordred Epigenetic Mechanisms in Rheumatoid Arthritis

    No full text
    Matrix metalloproteinases (MMPs) are implicated in the degradation of extracellular matrix (ECM). Rheumatoid arthritis (RA) synovial fibroblasts (SFs) produce matrix-degrading enzymes, including MMPs, which facilitate cartilage destruction in the affected joints in RA. Epigenetic mechanisms contribute to change in the chromatin state, resulting in an alteration of gene transcription. Recently, MMP gene activation has been shown to be caused in RASFs by the dysregulation of epigenetic changes, such as histone modifications, DNA methylation, and microRNA (miRNA) signaling. In this paper, we review the role of MMPs in the pathogenesis of RA as well as the disordered epigenetic mechanisms regulating MMP gene activation in RASFs

    The Histone Modification Code in the Pathogenesis of Autoimmune Diseases

    No full text
    Autoimmune diseases are chronic inflammatory disorders caused by a loss of self-tolerance, which is characterized by the appearance of autoantibodies and/or autoreactive lymphocytes and the impaired suppressive function of regulatory T cells. The pathogenesis of autoimmune diseases is extremely complex and remains largely unknown. Recent advances indicate that environmental factors trigger autoimmune diseases in genetically predisposed individuals. In addition, accumulating results have indicated a potential role of epigenetic mechanisms, such as histone modifications, in the development of autoimmune diseases. Histone modifications regulate the chromatin states and gene transcription without any change in the DNA sequence, possibly resulting in phenotype alteration in several different cell types. In this paper, we discuss the significant roles of histone modifications involved in the pathogenesis of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, primary biliary cirrhosis, and type 1 diabetes

    The Mechanisms Underlying Chronic Inflammation in Rheumatoid Arthritis from the Perspective of the Epigenetic Landscape

    No full text
    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that is characterized by synovial hyperplasia and progressive joint destruction. The activation of RA synovial fibroblasts (SFs), also called fibroblast-like synoviocytes (FLS), contributes significantly to perpetuation of the disease. Genetic and environmental factors have been reported to be involved in the etiology of RA but are insufficient to explain it. In recent years, accumulating results have shown the potential role of epigenetic mechanisms, including histone modifications, DNA methylation, and microRNAs, in the development of RA. Epigenetic mechanisms regulate chromatin state and gene transcription without any change in DNA sequence, resulting in the alteration of phenotypes in several cell types, especially RASFs. Epigenetic changes possibly provide RASFs with an activated phenotype. In this paper, we review the roles of epigenetic mechanisms relevant for the progression of RA

    Essentiality of Nfatc1 short isoform in osteoclast differentiation and its self-regulation

    No full text
    Abstract During osteoclast differentiation, the expression of the transcription factor nuclear factor of activated T cell 1 (Nfatc1) increases in an autoproliferative manner. Nfatc1 isoforms are of three sizes, and only the short isoform increases during osteoclast differentiation. Genetic ablation of the whole Nfatc1 gene demonstrated that it is essential for osteoclastogenesis; however, the specific role of the Nfatc1 short form (Nfatc1/αA) remains unknown. In this study, we engineered Nfatc1 short form-specific knockout mice and found that these mice died in utero by day 13.5. We developed a novel osteoclast culture system in which hematopoietic stem cells were cultured, proliferated, and then differentiated into osteoclasts in vitro. Using this system, we show that the Nfatc1/αA isoform is essential for osteoclastogenesis and is responsible for the expression of various osteoclast markers, the Nfatc1 short form itself, and Nfatc1 regulators
    corecore