158 research outputs found
Effects of telmisartan and ramipril on adiponectin and blood pressure in patients with type 2 diabetes
<b>Background:</b>
Adiponectin is secreted by adipose tissue and may play a role in cardiovascular disease. We examined adiponectin levels in patients with type 2 diabetes who participated in the Telmisartan vs. Ramipril in Renal Endothelial Dysfunction (TRENDY) study.
<b>Methods</b>
A total of 87 patients were assessed at baseline and following 9 weeks treatment with the angiotensin-receptor blocker telmisartan (final dose, 80 mg; n = 45) or the angiotensin-converting enzyme inhibitor ramipril (final dose, 10 mg; n = 42). Adiponectin levels were measured in plasma by radioimmunoassay.
<b>Results:</b>
Adiponectin levels were inversely correlated with systolic (SBP; r = -0.240, P < 0.05) and diastolic (DBP; r = -0.227, P < 0.05) blood pressure at baseline and following treatment with telmisartan or ramipril (SBP: r = -0.228, P < 0.05; DBP: r = -0.286, P < 0.05). Changes in adiponectin levels were related to changes in SBP (r = -0.357, P < 0.01) and DBP (r = -0.286, P < 0.01). There was a significant increase in adiponectin levels in the telmisartan (0.68 (95% confidence interval (CI), 0.27 to 1.10) <sup>µ</sup>g/ml, P < 0.01) but not in the ramipril group (0.17 (95% CI, -0.56 to 0.90) <sup>µ</sup>g/ml, P = 0.67). Blood pressure reduction in the telmisartan group (DeltaSBP: -13.5 (95% CI, -17.0 to -10.0) mm Hg; ΔDBP: -7.6 (95% CI, -9.8 to -5.3) mm Hg, each P < 0.001) was significantly (P less than or equal to 0.01 for SBP and P < 0.01 for DBP) greater than in the ramipril group (ΔSBP: -6.1 (95% CI, -6.2 to -2.0) mm Hg; ΔDBP: -2.7 (95% CI, -5.0 to -0.5) mm Hg; P < 0.01 and P < 0.05, respectively).
<b>Conclusion:</b>
Adiponectin is correlated with blood pressure in patients with type 2 diabetes. Whether increased adiponectin contributes to the blood pressure–lowering effect of telmisartan needs further study
HSP60 as a Target of Anti-Ergotypic Regulatory T Cells
The 60 kDa heat shock protein (HSP60) has been reported to influence T-cell responses in two ways: as a ligand of toll-like receptor 2 signalling and as an antigen. Here we describe a new mechanism of T-cell immuno-regulation focused on HSP60: HSP60 is up-regulated and presented by activated T cells (HSP60 is an ergotope) to regulatory (anti-ergotypic) T cells. Presentation of HSP60 by activated T cells was found to be MHC-restricted and dependent on accessory molecules - CD28, CD80 and CD86. Anti-ergotypic T cells responded to T-cell HSP60 by proliferation and secreted IFNγ and TGFβ1. In vitro, the anti-ergotypic T cells inhibited IFNγ production by their activated T-cell targets. In vivo, adoptive transfer of an anti-ergotypic HSP60-specific T-cell line led to decreased secretion of IFNγ by arthritogenic T cells and ameliorated adjuvant arthritis (AA). Thus, the presentation of HSP60 by activated T cells turns them into targets for anti-ergotypic regulatory T cells specific for HSP60. However, the direct interaction between the anti-ergotypic T regulators (anti-HSP60) and the activated T cells also down-regulated the regulators. Thus, by functioning as an ergotope, HSP60 can control both the effector T cells and the regulatory HSP60-specific T cells that control them
Genetic Covariance Structure of Reading, Intelligence and Memory in Children
This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two
Brief Review Renal Aging. Causes and consequences
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis—age–associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies
The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and endpoint data
Angiotensin-converting enzyme (ACE) is primarily localized (>90%) in various tissues and organs, most notably on the endothelium but also within parenchyma and inflammatory cells. Tissue ACE is now recognized as a key factor in cardiovascular and renal diseases. Endothelial dysfunction, in response to a number of risk factors or injury such as hypertension, diabetes mellitus, hypercholesteremia, and cigarette smoking, disrupts the balance of vasodilation and vasoconstriction, vascular smooth muscle cell growth, the inflammatory and oxidative state of the vessel wall, and is associated with activation of tissue ACE. Pathologic activation of local ACE can have deleterious effects on the heart, vasculature, and the kidneys. The imbalance resulting from increased local formation of angiotensin II and increased bradykinin degradation favors cardiovascular disease. Indeed, ACE inhibitors effectively reduce high blood pressure and exert cardio- and renoprotective actions. Recent evidence suggests that a principal target of ACE inhibitor action is at the tissue sites. Pharmacokinetic properties of various ACE inhibitors indicate that there are differences in their binding characteristics for tissue ACE. Clinical studies comparing the effects of antihypertensives (especially ACE inhibitors) on endothelial function suggest differences. More comparative experimental and clinical studies should address the significance of these drug differences and their impact on clinical events
Risk of hyperkalemia in patients with moderate chronic kidney disease initiating angiotensin converting enzyme inhibitors or angiotensin receptor blockers : a randomized study
Background: Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers are renoprotective but both may increase serum potassium concentrations in patients with chronic kidney disease (CKD). The proportion of affected patients, the optimum follow-up period and whether there are differences between drugs in the development of this complication remain to be scertained. Methods: In a randomized, double-blind, phase IV, controlled, crossover study we recruited 30 patients with stage 3 CKD under restrictive eligibility criteria and strict dietary control. With the exception of withdrawals, each patient was treated with olmesartan and enalapril separately for 3 months each, with a 1-week wash-out period between treatments. Patients were clinically assessed on 10 occasions via measurements of serum and urine samples. We used the Cochran-Mantel-Haenszel statistics for comparison of categorical data between groups. Comparisons were also made using independent two-sample t-tests and Welch's t-test. Analysis of variance (ANOVA) was performed when necessary. We used either a Mann-Whitney or Kruskal-Wallis test if the distribution was not normal or the variance not homogeneous. Results: Enalapril and olmesartan increased serum potassium levels similarly (0.3 mmol/L and 0.24 mmol/L respectively). The percentage of patients presenting hyperkalemia higher than 5 mmol/L did not differ between treatments: 37% for olmesartan and 40% for enalapril. The mean e-GFR ranged 46.3 to 48.59 ml/mint/1.73 m2 in those treated with olmesartan and 46.8 to 48.3 ml/mint/1.73 m2 in those with enalapril and remained unchanged at the end of the study. The decreases in microalbuminuria were also similar (23% in olmesartan and 29% in enalapril patients) in the 4 weeks time point. The percentage of patients presenting hyperkalemia, even after a two month period, did not differ between treatments. There were no appreciable changes in sodium and potassium urinary excretion. Conclusions: Disturbances in potassium balance upon treatment with either olmesartan or enalapril are frequent and without differences between groups. The follow-up of these patients should include control of potassium levels, at least after the first week and the first and second month after initiating treatment
Determinants of urinary albumin excretion within the normal range in patients with type 2 diabetes: the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) study
In contrast to microalbuminuric type 2 diabetic patients, the factors correlated with urinary albumin excretion are less well known in normoalbuminuric patients. This may be important because even within the normoalbuminuric range, higher rates of albuminuria are known to be associated with higher renal and cardiovascular risk. At the time of screening for the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) Study, the urinary albumin/creatinine ratio (UACR) was 0.44 mg/mmol in 4,449 type 2 diabetic patients. The independent correlates of UACR were analysed. Independent correlates of UACR during baseline were (in descending order): night-time systolic BP (r (s) = 0.19); HbA(1c) (r (s) = 0.18); mean 24 h systolic BP (r (s) = 0.16); fasting blood glucose (r (s) = 0.16); night-time diastolic BP (r (s) = 0.12); office systolic BP, sitting (r (s) = 0.11), standing (r (s) = 0.10); estimated GFR (r (s) = 0.10); heart rate, sitting (r (s) = 0.10); haemoglobin (r (s) = -0.10); triacylglycerol (r (s) = 0.09); and uric acid (r (s) = -0.08; all p a parts per thousand currency signaEuro parts per thousand 0.001). Significantly higher albumin excretion rates were found for the following categorical variables: higher waist circumference (more marked in men); presence of the metabolic syndrome; smoking (difference more marked in males); female sex; antihypertensive treatment; use of amlodipine; insulin treatment; family history of diabetes; and family history of cardiovascular disease (more marked in women). Although observational correlations do not prove causality, in normoalbuminuric type 2 diabetic patients the albumin excretion rate is correlated with many factors that are potentially susceptible to intervention. ClinicalTrials.gov ID no.: NCT00185159 This study was sponsored by Daichii-Sankyo.Nephrolog
Grammaire : Cours de Civilisation Francaise de la Sorbonne : 350 exercices niveau supérieur II
159 tr.; 25 cm
- …