77 research outputs found

    Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression

    Full text link
    Although fully generative models have been successfully used to model the contents of text documents, they are often awkward to apply to combinations of text data and document metadata. In this paper we propose a Dirichlet-multinomial regression (DMR) topic model that includes a log-linear prior on document-topic distributions that is a function of observed features of the document, such as author, publication venue, references, and dates. We show that by selecting appropriate features, DMR topic models can meet or exceed the performance of several previously published topic models designed for specific data.Comment: Appears in Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI2008

    Sparse Stochastic Inference for Latent Dirichlet allocation

    Full text link
    We present a hybrid algorithm for Bayesian topic models that combines the efficiency of sparse Gibbs sampling with the scalability of online stochastic inference. We used our algorithm to analyze a corpus of 1.2 million books (33 billion words) with thousands of topics. Our approach reduces the bias of variational inference and generalizes to many Bayesian hidden-variable models.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012
    • …
    corecore