33 research outputs found

    Collective Field Description of Spin Calogero-Sutherland Models

    Get PDF
    Using the collective field technique, we give the description of the spin Calogero-Sutherland Model (CSM) in terms of free bosons. This approach can be applicable for arbitrary coupling constant and provides the bosonized Hamiltonian of the spin CSM. The boson Fock space can be identified with the Hilbert space of the spin CSM in the large NN limit. We show that the eigenstates corresponding to the Young diagram with a single row or column are represented by the vertex operators. We also derive a dual description of the Hamiltonian and comment on the construction of the general eigenstates.Comment: 14 pages, one figure, LaTeX, with minor correction

    Braid Structure and Raising-Lowering Operator Formalism in Sutherland Model

    Full text link
    We algebraically construct the Fock space of the Sutherland model in terms of the eigenstates of the pseudomomenta as basis vectors. For this purpose, we derive the raising and lowering operators which increase and decrease eigenvalues of pseudomomenta. The operators exchanging eigenvalues of two pseudomomenta have been known. All the eigenstates are systematically produced by starting from the ground state and multiplying these operators to it.Comment: 11 pages, Latex, no figure

    Jack vertex operators and realization of Jack functions

    Full text link
    We give an iterative method to realize general Jack functions from Jack functions of rectangular shapes. We first show some cases of Stanley's conjecture on positivity of the Littlewood-Richardson coefficients, and then use this method to give a new realization of Jack functions. We also show in general that vectors of products of Jack vertex operators form a basis of symmetric functions. In particular this gives a new proof of linear independence for the rectangular and marked rectangular Jack vertex operators. Thirdly a generalized Frobenius formula for Jack functions was given and was used to give new evaluation of Dyson integrals and even powers of Vandermonde determinant.Comment: Expanded versio

    All the Exact Solutions of Generalized Calogero-Sutherland Models

    Full text link
    A collective field method is extended to obtain all the explicit solutions of the generalized Calogero-Sutherland models that are characterized by the roots of all the classical groups, including the solutions corresponding to spinor representations for BNB_N and DND_N cases.Comment: Latex, 17 pages. Title and abstract slightly changed, plus minor correction

    An (inverse) Pieri formula for Macdonald polynomials of type C

    Full text link
    We give an explicit Pieri formula for Macdonald polynomials attached to the root system C_n (with equal multiplicities). By inversion we obtain an explicit expansion for two-row Macdonald polynomials of type C.Comment: 31 pages, LaTeX, to appear in Transformation Group

    Equilibria of `Discrete' Integrable Systems and Deformations of Classical Orthogonal Polynomials

    Full text link
    The Ruijsenaars-Schneider systems are `discrete' version of the Calogero-Moser (C-M) systems in the sense that the momentum operator p appears in the Hamiltonians as a polynomial in e^{\pm\beta' p} (\beta' is a deformation parameter) instead of an ordinary polynomial in p in the hierarchies of C-M systems. We determine the polynomials describing the equilibrium positions of the rational and trigonometric Ruijsenaars-Schneider systems based on classical root systems. These are deformation of the classical orthogonal polynomials, the Hermite, Laguerre and Jacobi polynomials which describe the equilibrium positions of the corresponding Calogero and Sutherland systems. The orthogonality of the original polynomials is inherited by the deformed ones which satisfy three-term recurrence and certain functional equations. The latter reduce to the celebrated second order differential equations satisfied by the classical orthogonal polynomials.Comment: 45 pages. A few typos in section 6 are correcte

    The N=1 triplet vertex operator superalgebras

    Full text link
    We introduce a new family of C_2-cofinite N=1 vertex operator superalgebras SW(m), m1m \geq 1, which are natural super analogs of the triplet vertex algebra family W(p), p2p \geq 2, important in logarithmic conformal field theory. We classify irreducible SW(m)-modules and discuss logarithmic modules. We also compute bosonic and fermionic formulas of irreducible SW(m) characters. Finally, we contemplate possible connections between the category of SW(m)-modules and the category of modules for the quantum group U^{small}_q(sl_2), q=e^{\frac{2 \pi i}{2m+1}}, by focusing primarily on properties of characters and the Zhu's algebra A(SW(m)). This paper is a continuation of arXiv:0707.1857.Comment: 53 pages; v2: references added; v3: a few changes; v4: final version, to appear in CM

    Selberg Integral and SU(N) AGT Conjecture

    Full text link
    An intriguing coincidence between the partition function of super Yang-Mills theory and correlation functions of 2d Toda system has been heavily studied recently. While the partition function of gauge theory was explored by Nekrasov, the correlation functions of Toda equation have not been completely understood. In this paper, we study the latter in the form of Dotsenko-Fateev integral and reduce it in the form of Selberg integral of several Jack polynomials. We conjecture a formula for such Selberg average which satisfies some consistency conditions and show that it reproduces the SU(N) version of AGT conjecture.Comment: 35 pages, 5 figures; v2: minor modifications; v3: typos corrected, references adde
    corecore