375 research outputs found
The effects of ocean eddies on tropical cyclones
Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2012The purpose of this study is to understand the interactions of tropical cyclones with ocean
eddies. In particular we examine the influence of a cold-core eddy on the cold wake
formed during the passage of Typhoon Fanapi (2010). The three-dimensional version of
the numerical Price–Weller–Pinkel (PWP) vertical mixing model has previously been
used to simulate and study the cold wakes of Atlantic hurricanes. The model has not
been used in comparison with observations of typhoons in the Western Pacific Ocean. In
2010 several typhoons were studied during the Impact of Typhoons on the Ocean in the
Pacific (ITOP) field campaign and Fanapi was particularly well observed. We use these
observations and the 3DPWP to understand the ocean cold wake generated by Fanapi.
The cold wake of Fanapi was advected by a cyclonic eddy that was south of the typhoon
track. The 3DPWP model outputs with and without an eddy are compared with
observations made during the field campaign. These observations are compared to model
outputs with eddies in a series of positions right and left of the storm track in order to
study effects of mesoscale eddies on ocean vertical mixing in the cold wake of typhoons
Sensitivity of mixed-phase moderately deep convective clouds to parameterizations of ice formation : an ensemble perspective
The formation of ice in clouds is an important processes in mixed-phase and ice-phase clouds. Yet, the representation of ice formation in numerical models is highly uncertain. In the last decade, several new parameterizations for heterogeneous freezing have been proposed. However, it is currently unclear what the effect of choosing one parameterization over another is in the context of numerical weather prediction. We conducted high-resolution simulations (Δx=250 m) of moderately deep convective clouds (cloud top ∼−18 ∘C) over the southwestern United Kingdom using several formulations of ice formation and compared the resulting changes in cloud field properties to the spread of an initial condition ensemble for the same case.
The strongest impact of altering the ice formation representation is found in the hydrometeor number concentration and mass mixing ratio profiles. While changes in accumulated precipitation are around 10 %, high precipitation rates (95th percentile) vary by 20 %. Using different ice formation representations changes the outgoing short-wave radiation by about 2.9 W m−2 averaged over daylight hours. The choice of a particular representation for ice formation always has a smaller impact then omitting heterogeneous ice formation completely. Excluding the representation of the Hallett–Mossop process or altering the heterogeneous freezing parameterization has an impact of similar magnitude on most cloud macro- and microphysical variables with the exception of the frozen hydrometeor mass mixing ratios and number concentrations.
A comparison to the spread of cloud properties in a 10-member high-resolution initial condition ensemble shows that the sensitivity of hydrometeor profiles to the formulation of ice formation processes is larger than sensitivity to initial conditions. In particular, excluding the Hallett–Mossop representation results in profiles clearly different from any in the ensemble. In contrast, the ensemble spread clearly exceeds the changes introduced by using different ice formation representations in accumulated precipitation, precipitation rates, condensed water path, cloud fraction, and outgoing radiation fluxes
The motivating operation and negatively reinforced problem behavior. A systematic review.
The concept of motivational operations exerts an increasing influence on the understanding and assessment of problem behavior in people with intellectual and developmental disability. In this systematic review of 59 methodologically robust studies of the influence of motivational operations in negative reinforcement paradigms in this population, we identify themes related to situational and biological variables that have implications for assessment, intervention, and further research. There is now good evidence that motivational operations of differing origins influence negatively reinforced problem behavior, and that these might be subject to manipulation to facilitate favorable outcomes. There is also good evidence that some biological variables warrant consideration in assessment procedures as they predispose the person's behavior to be influenced by specific motivational operations. The implications for assessment and intervention are made explicit with reference to variables that are open to manipulation or that require further research and conceptualization within causal models
PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization Suite
This is the author accepted manuscript. The final version is available frpm Springer Verlag via the DOI in this record5th International Congress on Mathematical Software (ICMS 2016), 11-14 July 2016, Berlin, GermanySCIP is a solver for a wide variety of mathematical optimization problems. It is written in C and extendable due to its plug-in based design. However, dealing with all C specifics when extending SCIP can be detrimental to development and testing of new ideas. This paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how to intuitively model mixed-integer linear and quadratic optimization problems and moreover provide examples on how new Python plug-ins can be added to SCIP.German Federal Ministry of Education and Researc
Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations
Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches
Gutenberg Richter and Characteristic Earthquake Behavior in Simple Mean-Field Models of Heterogeneous Faults
The statistics of earthquakes in a heterogeneous fault zone is studied
analytically and numerically in the mean field version of a model for a
segmented fault system in a three-dimensional elastic solid. The studies focus
on the interplay between the roles of disorder, dynamical effects, and driving
mechanisms. A two-parameter phase diagram is found, spanned by the amplitude of
dynamical weakening (or ``overshoot'') effects (epsilon) and the normal
distance (L) of the driving forces from the fault. In general, small epsilon
and small L are found to produce Gutenberg-Richter type power law statistics
with an exponential cutoff, while large epsilon and large L lead to a
distribution of small events combined with characteristic system-size events.
In a certain parameter regime the behavior is bistable, with transitions back
and forth from one phase to the other on time scales determined by the fault
size and other model parameters. The implications for realistic earthquake
statistics are discussed.Comment: 21 pages, RevTex, 6 figures (ps, eps
Statistics of Earthquakes in Simple Models of Heterogeneous Faults
Simple models for ruptures along a heterogeneous earthquake fault zone are
studied, focussing on the interplay between the roles of disorder and dynamical
effects. A class of models are found to operate naturally at a critical point
whose properties yield power law scaling of earthquake statistics. Various
dynamical effects can change the behavior to a distribution of small events
combined with characteristic system size events. The studies employ various
analytic methods as well as simulations.Comment: 4 pages, RevTex, 3 figures (eps-files), uses eps
Aerosol–cloud interactions in mixed-phase convective clouds – Part 2: Meteorological ensemble
The relative contribution of variations in meteorological and aerosol initial and boundary conditions to the variability in modelled cloud properties is investigated with a high-resolution ensemble (30 members). In the investigated case, moderately deep convection develops along sea-breeze convergence zones over the southwestern peninsula of the UK. A detailed analysis of the mechanism of aerosol–cloud interactions in this case has been presented in the first part of this study (Miltenberger et al. 2018).
The meteorological ensemble (10 members) varies by about a factor of 2 in boundary-layer moisture convergence, surface precipitation, and cloud fraction, while aerosol number concentrations are varied by a factor of 100 between the three considered aerosol scenarios. If ensemble members are paired according to the meteorological initial and boundary conditions, aerosol-induced changes are consistent across the ensemble. Aerosol-induced changes in CDNC (cloud droplet number concentration), cloud fraction, cell number and size, outgoing shortwave radiation (OSR), instantaneous and mean precipitation rates, and precipitation efficiency (PE) are statistically significant at the 5 % level, but changes in cloud top height or condensate gain are not. In contrast, if ensemble members are not paired according to meteorological conditions, aerosol-induced changes are statistically significant only for CDNC, cell number and size, outgoing shortwave radiation, and precipitation efficiency. The significance of aerosol-induced changes depends on the aerosol scenarios compared, i.e. an increase or decrease relative to the standard scenario.
A simple statistical analysis of the results suggests that a large number of realisations (typically  > 100) of meteorological conditions within the uncertainty of a single day are required for retrieving robust aerosol signals in most cloud properties. Only for CDNC and shortwave radiation small samples are sufficient.
While the results are strictly only valid for the investigated case, the presented evidence combined with previous studies highlights the necessity for careful consideration of intrinsic predictability, meteorological conditions, and co-variability between aerosol and meteorological conditions in observational or modelling studies on aerosol indirect effects
- …