31 research outputs found

    Investigations on the transverse phase space at a photo injector for minimized emittance

    No full text

    SALOME: An Accelerator for the Practical Course in Accelerator Physics

    No full text
    SALOME (Simple Accelerator for Learning Optics and the Manipulation of Electrons) is a short low energy linear electron accelerator built by the University of Hamburg. The goal of this project is to give the students the possibility to obtain hands-on experience with the basics of accelerator physics. In this contribution the layout of the device will be presented. The most important components of the accelerator will be discussed and an overview of the planned demonstration experiments will be given

    Modal analysis of a seeded free-electron laser

    No full text
    It has been shown that the direct seeding can enhance the performance of a free-electron laser (FEL) in terms of its spectral, temporal, and coherence properties and reduces fluctuations in FEL output energy and arrival-time jitter. The properties of the used seed photon pulse are of high importance. In this paper, we describe the influence of the M2 onto the achievable power contrast between the direct seeded and the unseeded FEL radiation. The results of these studies are compared with the data from the high harmonic generation direct seeding experiment “sFLASH” in Hamburg, Germany. A method to measure M2 from a single transverse intensity distribution of the high harmonics beam at waist is discussed

    Experimental Test of Longitudinal Space-Charge Amplifier in Optical Range

    No full text
    Longitudinal space-charge effects can act as a driver for short wavelength radiation production in a longitudinal space-charge amplifier (LSCA) *. A single cascade of an LSCA was tested using the hardware of the sFLASH experiment installed at the FEL user facility FLASH (at DESY, Hamburg). Scans of the longitudinal dispersion of the chicane were performed with the tightly focused electron beam for different compression settings, while recording the intensity of the emission from a few-period undulator. We present experimental results and estimates on electron beam properties

    Mapping few-femtosecond slices of ultra-relativistic electron bunches

    No full text
    Free-electron lasers are unique sources of intense and ultra-short x-ray pulses that led to major scientific breakthroughs across disciplines from matter to materials and life sciences. The essential element of these devices are micrometer-sized electron bunches with high peak currents, low energy spread, and low emittance. Advanced FEL concepts such as seeded amplifiers rely on the capability of analyzing and controlling the electron beam properties with few-femtosecond time resolution. One major challenge is to extract tomographic slice parameters instead of projected electron beam properties. Here, we demonstrate that a radio-frequency deflector in combination with a dipole spectrometer not only allows for single-shot extraction of a seeded FEL pulse profile, but also provides information on the electron slice emittance and energy spread. The seeded FEL power profile can be directly related to the derived slice emittance as a function of intra-bunch coordinate with a resolution down to a few femtoseconds

    Extraction of the Longitudinal Profile of the Transverse Emittance From Single-Shot RF Deflector Measurements at sFLASH

    No full text
    The gain length of the free-electron laser (FEL) process strongly depends on the slice energy spread, slice emittance, and current of the electron bunch. At an FEL with only moderately compressed electron bunches, the slice energy spread is mainly determined by the compression process. In this regime, single-shot measurements using a transverse deflecting rf cavity enable the extraction of the longitudinal profile of the transverse emittance. At the free-electron laser FLASH at DESY, this technique was used to determine the slice properties of the electron bunch set up for seeded operation in the sFLASH experiment. Thereby, the performance of the seeded FEL process as a function of laser-electron timing can be predicted from these slice properties with the semi-analytical Ming-Xie model where only confined fractions of the electron bunch are stimulated to lase. The prediction is well in line with the FEL peak power observed during an experimental laser-electron timing scan. The power profiles of the FEL pulses were reconstructed from the longitudinal phase-space measurements of the seeded electron bunch that was measured with the rf deflector

    An Option to Generate Seeded FEL Radiation for FLASH1

    No full text
    The FLASH free-electron laser (FEL) at DESY is currently operated in self-amplified spontaneous emission (SASE) mode in both beamlines FLASH1 and FLASH2. Seeding offers unique properties for the FEL pulse, such as full coherence, spectral and temporal stability. In this contribution, possible ways to carry the seeded FEL radiation to the user hall are presented with analytical considerations and simulations. For this, components of the sFLASH seeding experiment are use

    An Option to Generate Seeded FEL Radiation for FLASH1

    No full text
    The FLASH free-electron laser (FEL) at DESY is currently operated in self-amplified spontaneous emission (SASE) mode in both beamlines FLASH1 and FLASH2. Seeding offers unique properties for the FEL pulse, such as full coherence, spectral and temporal stability. In this contribution, possible ways to carry the seeded FEL radiation to the user hall are presented with analytical considerations and simulations. For this, components of the sFLASH seeding experiment are used

    Control of FEL Radiation by Tailoring the Seed Pulses

    No full text
    Seeded free-electron lasers (FELs) produce intense, ultrashort and fully coherent X-ray pulses. These seeded FEL pulses depend on the initial seed properties. Therefore, controlling the seed laser allows tailoring the FEL radiation for phase-sensitive experiments. In this contribution, we present detailed simulation studies to characterize the FELprocess and to predict the operation performance of seeded pulses. In addition, we show experimental data on the temporal characterization of the seeded FEL pulses performed at the sFLASH experiment in Hamburg
    corecore