2,749 research outputs found

    Relativistic corrections to the electromagnetic polarizabilities of compound systems

    Get PDF
    The low-energy amplitude of Compton scattering on the bound state of two charged particles of arbitrary masses, charges and spins is calculated. A case in which the bound state exists due to electromagnetic interaction (QED) is considered. The term, proportional to ω2\omega^2, is obtained taking into account the first relativistic correction. It is shown that the complete result for this correction differs essentially from the commonly used term Δα\Delta\alpha, proportional to the r.m.s. charge radius of the system. We propose that the same situation can take place in the more complicated case of hadrons.Comment: 19 pages, LaTe

    California Horse Racing Board

    Get PDF

    California Horse Racing Board

    Get PDF

    Quasiclassical Green function in an external field and small-angle scattering

    Get PDF
    The quasiclassical Green functions of the Dirac and Klein-Gordon equations in the external electric field are obtained with the first correction taken into account. The relevant potential is assumed to be localized, while its spherical symmetry is not required. Using these Green functions, the corresponding wave functions are found in the approximation similar to the Furry-Sommerfeld-Maue approximation. It is shown that the quasiclassical Green function does not coincide with the Green function obtained in the eikonal approximation and has a wider region of applicability. It is illustrated by the calculation of the small-angle scattering amplitude for a charged particle and the forward photon scattering amplitude. For charged particles, the first correction to the scattering amplitude in the non-spherically symmetric potential is found. This correction is proportional to the scattering angle. The real part of the amplitude of forward photon scattering in a screened Coulomb potential is obtained.Comment: 20 pages, latex, 1 figur

    Department of Real Estate

    Get PDF

    Department of Real Estate

    Get PDF

    Structure of the σ\sigma-meson and diamagnetism of the nucleon

    Full text link
    The structure of the σ\sigma meson and the diamagnetism of the nucleon are shown to be topics which are closely related to each other. Arguments are found that the σ\sigma meson couples to two photons via its non-strange qqˉq\bar{q} structure component. This ansatz leads to a quantitative explanation of the tt-channel component of the difference of electromagnetic polarizabilities, (\alpha-\beta)^t,containingthediamagnetismofthenucleon.Thepredictionis, containing the diamagnetism of the nucleon. The prediction is (\alpha-\beta)^t_{p,n}=(5\alpha_e g_{\pi MM})/(6\pi^2 m^2_\sigma f_\pi)=15.3inunitsof in units of 10^{-4}{\rm fm}^3tobecomparedwiththeexperimentalvalue to be compared with the experimental value (\alpha-\beta)^t_p=15.1\pm 1.3fortheprotonand for the proton and (\alpha-\beta)^t_n=14.8\pm 2.7fortheneutron.Theequivalentapproachtoexploitthe for the neutron. The equivalent approach to exploit the \pi\pistructurecomponentofthe structure component of the \sigmamesonviatheBEFTsumruleleadsto meson via the BEFT sum rule leads to (\alpha-\beta)^t_{p,n}=14\pm 2$, what also is in agreement with the experimental results.Comment: Contribution made by Martin Schumacher to the International Workshop on the Physics of Excited Baryons, 12 - 15 Oct. 2005, Tallahasse, Florida US
    corecore