695 research outputs found
Exact numerical simulation of power-law noises
Many simulations of stochastic processes require colored noises: I describe
here an exact numerical method to simulate power-law noises: the method can be
extended to more general colored noises, and is exact for all time steps, even
when they are unevenly spaced (as may often happen for astronomical data, see
e.g. N. R. Lomb, Astrophys. Space Sci. {\bf 39}, 447 (1976)). The algorithm has
a well-behaved computational complexity, it produces a nearly perfect Gaussian
noise, and its computational efficiency depends on the required degree of noise
Gaussianity.Comment: 14 postscript figures, accepted for publication on Phys. Rev.
Self-Organising Networks for Classification: developing Applications to Science Analysis for Astroparticle Physics
Physics analysis in astroparticle experiments requires the capability of
recognizing new phenomena; in order to establish what is new, it is important
to develop tools for automatic classification, able to compare the final result
with data from different detectors. A typical example is the problem of Gamma
Ray Burst detection, classification, and possible association to known sources:
for this task physicists will need in the next years tools to associate data
from optical databases, from satellite experiments (EGRET, GLAST), and from
Cherenkov telescopes (MAGIC, HESS, CANGAROO, VERITAS)
The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity
Vacuum magnetic birefringence was predicted long time ago and is still
lacking a direct experimental confirmation. Several experimental efforts are
striving to reach this goal, and the sequence of results promises a success in
the next few years. This measurement generally is accompanied by the search for
hypothetical light particles that couple to two photons. The PVLAS experiment
employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In
this paper we report on the latest experimental results of this experiment. The
data are analysed taking into account the intrinsic birefringence of the
dielectric mirrors of the cavity. Besides the limit on the vacuum magnetic
birefringence, the measurements also allow the model-independent exclusion of
new regions in the parameter space of axion-like and milli-charged particles.
In particular, these last limits hold also for all types of neutrinos,
resulting in a laboratory limit on their charge
New PVLAS model independent limit for the axion coupling to for axion masses above 1meV
During 2014 the PVLAS experiment has started data taking with a new apparatus
installed at the INFN Section of Ferrara, Italy. The main target of the
experiment is the observation of magnetic birefringence of vacuum. According to
QED, the ellipticity generated by the magnetic birefringence of vacuum in the
experimental apparatus is expected to be . No ellipticity signal is present so far with a noise floor
after 210 hours of data taking.
The resulting ellipticity limit provides the best model independent upper limit
on the coupling of axions to for axion masses above eV
Measurement of the Cotton Mouton effect of water vapour
In this paper we report on a measurement of the Cotton Mouton effect of water
vapour. Measurement performed at room temperature ( K) with a wavelength
of 1064 nm gave the value for the
unit magnetic birefringence (1 T magnetic field and atmospheric pressure)
First results from the new PVLAS apparatus: a new limit on vacuum magnetic birefringence
Several groups are carrying out experiments to observe and measure vacuum
magnetic birefringence, predicted by Quantum Electrodynamics (QED). We have
started running the new PVLAS apparatus installed in Ferrara, Italy, and have
measured a noise floor value for the unitary field magnetic birefringence of
vacuum T (the error
represents a 1 deviation). This measurement is compatible with zero and
hence represents a new limit on vacuum magnetic birefringence deriving from non
linear electrodynamics. This result reduces to a factor 50 the gap to be
overcome to measure for the first time the value of predicted by QED:
~T. These birefringence measurements also yield improved
model-independent bounds on the coupling constant of axion-like particles to
two photons, for masses greater than 1 meV, along with a factor two improvement
of the fractional charge limit on millicharged particles (fermions and
scalars), including neutrinos
Interplay between distribution of live cells and growth dynamics of solid tumours
Experiments show that simple diffusion of nutrients and waste molecules is not sufficient to explain the typical multilayered structure of solid tumours, where an outer rim of proliferating cells surrounds a layer of quiescent but viable cells and a central necrotic region. These experiments challenge models of tumour growth based exclusively on diffusion. Here we propose a model of tumour growth that incorporates the volume dynamics and the distribution of cells within the viable cell rim. The model is suggested by in silico experiments and is validated using in vitro data. The results correlate with in vivo data as well, and the model can be used to support experimental and clinical oncology
Quantum Fluctuations of Coulomb Potential as a Source of Flicker Noise. The Influence of External Electric Field
Fluctuations of the electromagnetic field produced by quantized matter in
external electric field are investigated. A general expression for the power
spectrum of fluctuations is derived within the long-range expansion. It is
found that in the whole measured frequency band, the power spectrum of
fluctuations exhibits an inverse frequency dependence. A general argument is
given showing that for all practically relevant values of the electric field,
the power spectrum of induced fluctuations is proportional to the field
strength squared. As an illustration, the power spectrum is calculated
explicitly using the kinetic model with the relaxation-type collision term.
Finally, it is shown that the magnitude of fluctuations produced by a sample
generally has a Gaussian distribution around its mean value, and its dependence
on the sample geometry is determined. In particular, it is demonstrated that
for geometrically similar samples, the power spectrum is inversely proportional
to the sample volume. Application of the obtained results to the problem of
flicker noise is discussed.Comment: 14 pages, 3 figure
Quantum Fluctuations of the Gravitational Field and Propagation of Light: a Heuristic Approach
Quantum gravity is quite elusive at the experimental level; thus a lot of
interest has been raised by recent searches for quantum gravity effects in the
propagation of light from distant sources, like gamma ray bursters and active
galactic nuclei, and also in earth-based interferometers, like those used for
gravitational wave detection. Here we describe a simple heuristic picture of
the quantum fluctuations of the gravitational field that we have proposed
recently, and show how to use it to estimate quantum gravity effects in
interferometers.Comment: LaTeX2e, 8 pages, 2 eps figures: Talk presented at QED2000, 2nd
Workshop on Frontier Tests of Quantum Electrodynamics and Physics of the
Vacuum; included in conference proceeding
- …