695 research outputs found

    Exact numerical simulation of power-law noises

    Full text link
    Many simulations of stochastic processes require colored noises: I describe here an exact numerical method to simulate power-law noises: the method can be extended to more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen for astronomical data, see e.g. N. R. Lomb, Astrophys. Space Sci. {\bf 39}, 447 (1976)). The algorithm has a well-behaved computational complexity, it produces a nearly perfect Gaussian noise, and its computational efficiency depends on the required degree of noise Gaussianity.Comment: 14 postscript figures, accepted for publication on Phys. Rev.

    Self-Organising Networks for Classification: developing Applications to Science Analysis for Astroparticle Physics

    Full text link
    Physics analysis in astroparticle experiments requires the capability of recognizing new phenomena; in order to establish what is new, it is important to develop tools for automatic classification, able to compare the final result with data from different detectors. A typical example is the problem of Gamma Ray Burst detection, classification, and possible association to known sources: for this task physicists will need in the next years tools to associate data from optical databases, from satellite experiments (EGRET, GLAST), and from Cherenkov telescopes (MAGIC, HESS, CANGAROO, VERITAS)

    The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity

    Get PDF
    Vacuum magnetic birefringence was predicted long time ago and is still lacking a direct experimental confirmation. Several experimental efforts are striving to reach this goal, and the sequence of results promises a success in the next few years. This measurement generally is accompanied by the search for hypothetical light particles that couple to two photons. The PVLAS experiment employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In this paper we report on the latest experimental results of this experiment. The data are analysed taking into account the intrinsic birefringence of the dielectric mirrors of the cavity. Besides the limit on the vacuum magnetic birefringence, the measurements also allow the model-independent exclusion of new regions in the parameter space of axion-like and milli-charged particles. In particular, these last limits hold also for all types of neutrinos, resulting in a laboratory limit on their charge

    New PVLAS model independent limit for the axion coupling to γγ\gamma\gamma for axion masses above 1meV

    Full text link
    During 2014 the PVLAS experiment has started data taking with a new apparatus installed at the INFN Section of Ferrara, Italy. The main target of the experiment is the observation of magnetic birefringence of vacuum. According to QED, the ellipticity generated by the magnetic birefringence of vacuum in the experimental apparatus is expected to be ψ(QED)5×1011\psi^{\rm(QED)} \approx 5\times10^{-11}. No ellipticity signal is present so far with a noise floor ψ(noise)2.5×109\psi^{\rm(noise)} \approx 2.5\times10^{-9} after 210 hours of data taking. The resulting ellipticity limit provides the best model independent upper limit on the coupling of axions to γγ\gamma\gamma for axion masses above 10310^{-3}eV

    Measurement of the Cotton Mouton effect of water vapour

    Full text link
    In this paper we report on a measurement of the Cotton Mouton effect of water vapour. Measurement performed at room temperature (T=301T=301 K) with a wavelength of 1064 nm gave the value Δnu=(6.67±0.45)1015\Delta n_u = (6.67 \pm 0.45) \cdot 10^{-15} for the unit magnetic birefringence (1 T magnetic field and atmospheric pressure)

    First results from the new PVLAS apparatus: a new limit on vacuum magnetic birefringence

    Full text link
    Several groups are carrying out experiments to observe and measure vacuum magnetic birefringence, predicted by Quantum Electrodynamics (QED). We have started running the new PVLAS apparatus installed in Ferrara, Italy, and have measured a noise floor value for the unitary field magnetic birefringence of vacuum Δnu(vac)=(4±20)×1023\Delta n_u^{\rm (vac)}= (4\pm 20) \times 10^{-23} T2^{-2} (the error represents a 1σ\sigma deviation). This measurement is compatible with zero and hence represents a new limit on vacuum magnetic birefringence deriving from non linear electrodynamics. This result reduces to a factor 50 the gap to be overcome to measure for the first time the value of Δnu(vac,QED)\Delta n_u^{\rm (vac,QED)} predicted by QED: Δnu(vac,QED)=4×1024\Delta n_u^{\rm (vac,QED)}= 4\times 10^{-24} ~T2^{-2}. These birefringence measurements also yield improved model-independent bounds on the coupling constant of axion-like particles to two photons, for masses greater than 1 meV, along with a factor two improvement of the fractional charge limit on millicharged particles (fermions and scalars), including neutrinos

    Interplay between distribution of live cells and growth dynamics of solid tumours

    Get PDF
    Experiments show that simple diffusion of nutrients and waste molecules is not sufficient to explain the typical multilayered structure of solid tumours, where an outer rim of proliferating cells surrounds a layer of quiescent but viable cells and a central necrotic region. These experiments challenge models of tumour growth based exclusively on diffusion. Here we propose a model of tumour growth that incorporates the volume dynamics and the distribution of cells within the viable cell rim. The model is suggested by in silico experiments and is validated using in vitro data. The results correlate with in vivo data as well, and the model can be used to support experimental and clinical oncology

    Quantum Fluctuations of Coulomb Potential as a Source of Flicker Noise. The Influence of External Electric Field

    Get PDF
    Fluctuations of the electromagnetic field produced by quantized matter in external electric field are investigated. A general expression for the power spectrum of fluctuations is derived within the long-range expansion. It is found that in the whole measured frequency band, the power spectrum of fluctuations exhibits an inverse frequency dependence. A general argument is given showing that for all practically relevant values of the electric field, the power spectrum of induced fluctuations is proportional to the field strength squared. As an illustration, the power spectrum is calculated explicitly using the kinetic model with the relaxation-type collision term. Finally, it is shown that the magnitude of fluctuations produced by a sample generally has a Gaussian distribution around its mean value, and its dependence on the sample geometry is determined. In particular, it is demonstrated that for geometrically similar samples, the power spectrum is inversely proportional to the sample volume. Application of the obtained results to the problem of flicker noise is discussed.Comment: 14 pages, 3 figure

    Quantum Fluctuations of the Gravitational Field and Propagation of Light: a Heuristic Approach

    Full text link
    Quantum gravity is quite elusive at the experimental level; thus a lot of interest has been raised by recent searches for quantum gravity effects in the propagation of light from distant sources, like gamma ray bursters and active galactic nuclei, and also in earth-based interferometers, like those used for gravitational wave detection. Here we describe a simple heuristic picture of the quantum fluctuations of the gravitational field that we have proposed recently, and show how to use it to estimate quantum gravity effects in interferometers.Comment: LaTeX2e, 8 pages, 2 eps figures: Talk presented at QED2000, 2nd Workshop on Frontier Tests of Quantum Electrodynamics and Physics of the Vacuum; included in conference proceeding
    corecore