3,785 research outputs found

    Aspherical Core-Collapse Supernovae in Red Supergiants Powered by Nonrelativistic Jets

    Get PDF
    We explore the observational characteristics of jet-driven supernovae by simulating bipolar-jet-driven explosions in a red supergiant progenitor. We present results of four models in which we hold the injected kinetic energy at a constant 105110^{51} ergs across all jet models but vary the specific characteristics of the jets to explore the influence of the nature of jets on the structure of the supernova ejecta. We evolve the explosions past shock-breakout and into quasi-homologous expansion of the supernova envelope into a red supergiant wind. The oppositely-directed, nickel-rich jets give a large-scale asymmetry that may account for the non-spherical excitation and substructure of spectral lines such as Hα\alpha and He I 10830\AA. Jets with a large fraction of kinetic to thermal energy punch through the progenitor envelope and give rise to explosions that would be observed to be asymmetric from the earliest epochs, inconsistent with spectropolarimetric measurements of Type II supernovae. Jets with higher thermal energy fractions result in explosions that are roughly spherical at large radii but are significantly elongated at smaller radii, deep inside the ejecta, in agreement with the polarimetric observations. We present shock breakout light curves that indicate that strongly aspherical shock breakouts are incompatible with recent {\it GALEX} observations of shock breakout from red supergiant stars. Comparison with observations indicates that jets must deposit their kinetic energy efficiently throughout the ejecta while in the hydrogen envelope. Thermal energy-dominated jets satisfy this criterion and yield many of the observational characteristics of Type II supernovae.Comment: 21 pages, 19 figures, submitted to ApJ on 4 Nov 200

    Advanced PON topologies with wireless connectivity

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”The interoperability of wireless and PON networking solutions is investigated to reduce deployment expenditure by means of centralised network management while providing ubiquitous access connections and mobility. Network modelling in the physical layer of WiMAX channel transmission based on FDM over legacy PONs has demonstrated EVMs below -30 dB and error-free multipath transmission. In addition, the development of a dynamic MAC protocol suite has been presented to assign bandwidth between the OLT and ONU BaseStations over a multi-wavelength, splitter-PON topology to demonstrate converged network scalability. This has been achieved by managing data-centric traffic with quality of service in view of diverse multi-user access technologies

    A multi-wavelength access network featuring WiMAX transmission over GPON links

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”An IEEE802.16e compliant PON architecture with wavelength band overlay has been demonstrated. Transparent transmission of mobile-WiMAX RF channels over multi-wavelength GPON links, based on FDM, has demonstrated at remote receivers standard WiMAX EVM figures with 1E-11 GPON bit-error-rates

    Prospectives for stop searches at ATLAS and CMS

    Get PDF
    The search for supersymmetric partners of the top quark, stop squark, could result in the early discovery of physics beyond the Standard Model at the LHC. We present here the searches for stop squark within the mSUGRA model at ATLAS and CMS detectors. Results of simulation studies are presented. Search for the light stop squark in the low mass SUSY model, originating from the gluino decay, using the final state tb invariant mass at ATLAS is described. Inclusive stop search in the intermediate scenario, using the events with top candidate, leptons and missing energy at CMS is also presented. The discovery prospects in both studies are focused at early data

    The Merging History of Massive Black Holes

    Full text link
    We investigate a hierarchical structure formation scenario describing the evolution of a Super Massive Black Holes (SMBHs) population. The seeds of the local SMBHs are assumed to be 'pregalactic' black holes, remnants of the first POPIII stars. As these pregalactic holes become incorporated through a series of mergers into larger and larger halos, they sink to the center owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become supermassive, form a binary system, and eventually coalesce. A simple model in which the damage done to a stellar cusps by decaying BH pairs is cumulative is able to reproduce the observed scaling relation between galaxy luminosity and core size. An accretion model connecting quasar activity with major mergers and the observed BH mass-velocity dispersion correlation reproduces remarkably well the observed luminosity function of optically-selected quasars in the redshift range 1<z<5. We finally asses the potential observability of the gravitational wave background generated by the cosmic evolution of SMBH binaries by the planned space-born interferometer LISA.Comment: 4 pages, 2 figures, Contribute to "Multiwavelength Cosmology", Mykonos, Greece, June 17-20, 200

    Black Hole Feedback On The First Galaxies

    Get PDF
    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.Astronom

    Hierarchical build-up of galactic bulges and the merging rate of supermassive binary black holes

    Full text link
    The hierarchical build-up of galactic bulges should lead to the build-up of present-day supermassive black holes by a mixture of gas accretion and merging of supermassive black holes. The tight relation between black hole mass and stellar velocity dispersion is thereby a strong argument that the supermassive black holes in merging galactic bulges do indeed merge. Otherwise the ejection of supermassive black holes by gravitational slingshot would lead to excessive scatter in this relation. At high redshift the coalescence of massive black hole binaries is likely to be driven by the accretion of gas in the major mergers signposted by optically bright QSO activity. If massive black holes only form efficiently by direct collapse of gas in deep galactic potential wells with v_c > 100 km/s as postulated in the model of Kauffmann & Haehnelt (2000) LISA expects to see event rates from the merging of massive binary black holes of about 0.1-1 yr^{-1} spread over the redshift range 0 < z < 5. If, however, the hierarchical build-up of supermassive black holes extends to pre-galactic structures with significantly shallower potential wells event rates may be as high as 10-100 yr^{-1} and will be dominated by events from redshift z > 5.Comment: 8 pages, 4 postscript figures. Proceedings of the 4th International LISA Symposium, Penn State University, 19-24 July 2002, ed. L S Fin

    Accretion onto Intermediate-Mass Black Holes in Dense Protogalactic Clouds

    Get PDF
    We present the first results from two-dimensional simulations of radiatively-efficient accretion of metal-free gas onto intermediate-mass black holes. We fix the shape of the spectral energy distribution of the radiation produced near the event horizon and study the structure of the irradiated low-angular-momentum accretion flow over three orders of magnitude in radius from the black hole, 10^{14}-10^{17} cm for a 100 M_sun black hole. The luminosity of the central source is made to be proportional to the rate at which gas accretes across the inner boundary, which we set just inside the sonic radius. We find that photoionization heating and radiation pressure modify the structure of the flow. When the ambient gas density is 10^7 cm^{-3}, accretion is intermittent and on average reduced to 32% of the Eddington-limited rate, two orders of magnitude below the "Bondi" rate evaluated ignoring radiation, in agreement with simplified theoretical models. Even if the vicinity of the black hole is supplied with high density gas, accretion is rendered inefficient through heating and radiation pressure.Comment: 4 pages, 3 figure
    • …
    corecore