3 research outputs found
Development of Modular and Adaptive Laboratory Set-Up for Neuroergonomic and Human-Robot Interaction Research
The industry increasingly insists on academic cooperation to solve the identified problems such as workers\u27 performance, wellbeing, job satisfaction, and injuries. It causes an unsafe and unpleasant working environment that directly impacts the quality of the product, workers\u27 productivity, and effectiveness. This study aimed to give a specialized solution for tests and explore possible solutions to the given problem in neuroergonomics and human-robot interaction. The designed modular and adaptive laboratory model of the industrial assembly workstation represents the laboratory infrastructure for conducting advanced research in the field of ergonomics, neuroergonomics, and human-robot interaction. It meets the operator\u27s anatomical, anthropometric, physiological, and biomechanical characteristics. Comparing standard, ergonomic, guided, and collaborative work will be possible based on workstation construction and integrated elements. These possibilities allow the industry to try, analyze, and get answers for an identified problem, the condition, habits, and behavior of operators in the workplace. The set-up includes a workstation with an industry work chair, a Poka-Yoke system, adequate lighting, an audio 5.0 system, containers with parts and tools, EEG devices (a cap and smartfones), an EMG device, touchscreen PC screen, and collaborative robot. The first phase of the neuroergonomic study was performed according to the most common industry tasks defined as manual, monotonous, and repetitive activities. Participants have a task to assemble the developed prototype model of an industrial product using prepared parts and elements, and instructed by the installed touchscreen PC. In the beginning, the participant gets all the necessary information about the experiment and gets 15 min of practice. After the introductory part, the EEG device is mounted and prepared for recording. The experiment starts with relaxing music for 5 min. The whole experiment lasts two sessions per 60 min each, with a 15 min break between the sessions. Based on the first experiments, it is possible to develop, construct, and conduct complex experiments for industrial purposes to improve the physical, cognitive, and organizational aspects and increase workers\u27 productivity, efficiency, and effectiveness. It has highlighted the possibility of applying modular and adaptive ergonomic research laboratory experimental set-up to transform standard workplaces into the workplaces of the future
Gender Dysphoria: Bioethical Aspects of Medical Treatment
Gender affirmation surgery remains one of the greatest challenges in transgender medicine. In recent years, there have been continuous discussions on bioethical aspects in the treatment of persons with gender dysphoria. Gender reassignment is a difficult process, including not only hormonal treatment with possible surgery but also social discrimination and stigma. There is a great variety between countries in specified tasks involved in gender reassignment, and a complex combination of medical treatment and legal paperwork is required in most cases. The most frequent bioethical questions in transgender medicine pertain to the optimal treatment of adolescents, sterilization as a requirement for legal recognition, role of fertility and parenthood, and regret after gender reassignment. We review the recent literature with respect to any new information on bioethical aspects related to medical treatment of people with gender dysphoria
Development of a Neuroergonomic Assessment for the Evaluation of Mental Workload in an Industrial Human–Robot Interaction Assembly Task: A Comparative Case Study
The disruptive deployment of collaborative robots, named cobots, in Industry 5.0 has brought attention to the safety and ergonomic aspects of industrial human–robot interaction (HRI) tasks. In particular, the study of the operator’s mental workload in HRI activities has been the research object of a new branch of ergonomics, called neuroergonomics, to improve the operator’s wellbeing and the efficiency of the system. This study shows the development of a combinative assessment for the evaluation of mental workload in a comparative analysis of two assembly task scenarios, without and with robot interaction. The evaluation of mental workload is achieved through a combination of subjective (NASA TLX) and real-time objective measurements. This latter measurement is found using an innovative electroencephalogram (EEG) device and the characterization of the cognitive workload through the brainwave power ratio β/α, defined after the pre-processing phase of EEG data. Finally, observational analyses are considered regarding the task performance of the two scenarios. The statistical analyses show how significantly the mental workload diminution and a higher level of performance, as the number of components assembled correctly by the participants, are achieved in the scenario with the robot