5 research outputs found

    Short-term dexamethasone plus acetylsalicylic acid treatment during in vitro fertilization procedure

    Get PDF
    Objectives: Embryo implantation represents the major limiting step during in vitro fertilization (IVF) procedure. Immu- nological and coagulation abnormalities were shown to have a substantial part in multifactorial etiology of IVF failure. We aimed to investigate the effect of short-term low-dose dexamethasone plus acetylsalicylic acid (ASA) treatment, starting at the time of embryo transfer, on the implantation and clinical pregnancy rates in general IVF population.  Material and methods: Out of 233 consecutive patients undergoing fresh IVF/intracytoplasmic sperm injection (ICSI) cycles 64 received an adjuvant treatment consisting of dexamethasone (0.5 mg/day) plus ASA (100 mg/day) (DA group), starting on the day of embryo transfer. Patients not receiving these medications comprised a control group.  Results: Significantly more patients in DA group had positive ß-hCG values than controls (59.38% vs. 37.67%, p = 0.004) (OR = 2.42, 95% CI: 1.33–4.41). Implantation rate was 26.53% in DA group and 15.92% in controls (p = 0.0294). Clinical preg- nancy rate per started cycle was higher in DA group (43.59%) than controls (28.92%), but the difference was not significant (p = 0.0879; OR = 1.99, 95% CI: 0.89–4.41).  Conclusions: Our study shows a potential benefit of dexamethasone plus ASA adjuvant treatment in females undergoing IVF/ICSI procedure. As these results show improvement of IVF outcome, a greater number of patients undergoing this type and regime of adjuvant treatment should be investigated.

    The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease

    No full text
    The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the “guardian of mitochondria” by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes

    Indicators of stress hematopoiesis in the blood predict COVID-19 progression in patients over 65 years old

    No full text
    ABSTRACTObjectives Advanced age is a well-established risk factor for severe coronavirus disease 2019 (COVID-19). Exacerbated inflammation affects multiple organs, among which hematopoiesis responds by increased output of various cells. We aimed to determine the association between COVID-19 progression and large immature cell (LIC) counts, changes in erythrocyte and platelet distribution widths (RDW, PDW) with reference to patients’ age.Methods A total of 755 patients with complete blood cell (CBC) analysis in the first 24 h of hospitalization were enrolled. Patients were divided into two groups: under and above 65 years of age.Results The LIC counts were different in both groups (p < 0.003). However, only the senior patients had markedly different values of RDW and PDW (p < 0.001). The receiver operating characteristic (ROC) curve analysis provided increased LIC (AUC = 0.600), RDW (AUC = 0.609), PDW (AUC = 0.556), and platelet to LIC ratio (AUC = 0.634) as significant in discriminating outcome in the older group. Importantly, these results were not repeated in the younger patients. In the elderly, the progression was predicted with LIC cut-off at ≥ 0.305 × 109/L (OR = 3.166) and RDW over 12.15% (OR = 2.081).Discussion Aging is characterized by a decline in immunological competence with a compromised control of inflammation leading to a proinflammatory state. This background together with the actions of pathogens may lead to emergency myelopoiesis.Conclusion Our results point to the important differences between age groups regarding CBC-related parameters of stress hematopoiesis during severe infection. Higher LIC, RDW and PDW levels were reliable in the early identification of COVID-19 progression only in the elderly
    corecore