2 research outputs found

    Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    No full text
    The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level) was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries

    Development of software for the thermohydraulic analysis of air coolers

    No full text
    Air coolers consume much more energy compared to other heat exchangers due to the large fan power required. This is an additional reason to establish reliable methods for the rational design and thermohydraulic analysis of these devices. The optimal values of the outlet temperature and air flow rate are of particular importance. The paper presents a methodology for the thermohydraulic calculation of air cooler performances, which is incorporated in the "Air Cooler" software module. The module covers two options: cooling and/or condensation of process fluids by ambient air. The calculated results can be given in various ways ie. in the tabular and graphical form
    corecore