754 research outputs found
Phase space measure concentration for an ideal gas
We point out that a special case of an ideal gas exhibits concentration of
the volume of its phase space, which is a sphere, around its equator in the
thermodynamic limit. The rate of approach to the thermodynamic limit is
determined. Our argument relies on the spherical isoperimetric inequality of
L\'{e}vy and Gromov.Comment: 15 pages, No figures, Accepted by Modern Physics Letters
Quantum logic gates using Stark shifted Raman transitions in a cavity
We present a scheme to realise the basic two-quibit logic gates such as
quantum phase gate and controlle-NOT gate using a detuned optical cavity
interacting with a three-level Raman system. We discuss the role of Stark
shifts which are as important as the terms leading to two-photon transition.
The operation of the proposed logic gates involves metastable states of the
atom and hence is not affected by spontaneous emission. These ideas can be
extended to produce multiparticle entanglement.Comment: 5 pages, 1 figure, RevTeX4, Text is modifie
Rate of parity violation from measure concentration
We present a geometric argument determining the kinematic (phase-space)
factor contributing to the relative rate at which degrees of freedom of one
chirality come to dominate over degrees of freedom of opposite chirality, in
models with parity violation. We rely on the measure concentration of a subset
of a Euclidean cube which is controlled by an isoperimetric inequality. We
provide an interpretation of this result in terms of ideas of Statistical
Mechanics.Comment: 10 pages, no figure
Topologically decoherence-protected qubits with trapped ions
We show that trapped ions can be used to simulate a highly symmetrical
Hamiltonian with eingenstates naturally protected against local sources of
decoherence. This Hamiltonian involves long range coupling between particles
and provides a more efficient protection than nearest neighbor models discussed
in previous works. Our results open the perspective of experimentally realizing
in controlled atomic systems, complex entangled states with decoherence times
up to nine orders of magnitude longer than isolated quantum systems.Comment: 4 page
Relation between concurrence and Berry phase of an entangled state of two spin 1/2 particles
We have studied here the influence of the Berry phase generated due to a
cyclic evolution of an entangled state of two spin 1/2 particles. It is shown
that the measure of formation of entanglement is related to the cyclic
geometric phase of the individual spins. \\Comment: 6 pages. Accepted in Europhys. Letters (likely to be published in vol
73, pp1-6 (2006)
- …