29,932 research outputs found
Spectroscopic study of unique line broadening and inversion in low-pressure microwave generated water plasmas
It was demonstrated that low pressure (~0.2 Torr) water vapor plasmas
generated in a 10 mm inner diameter quartz tube with an Evenson microwave
cavity show at least two features which are not explained by conventional
plasma models. First, significant (> 0.25 nm) hydrogen Balmer_ line broadening,
of constant width, up to 5 cm from the microwave coupler was recorded. Only
hydrogen, and not oxygen, showed significant line broadening. This feature,
observed previously in hydrogen-containing mixed gas plasmas generated with
high voltage dc and rf discharges was explained by some researchers to result
from acceleration of hydrogen ions near the cathode. This explanation cannot
apply to the line broadening observed in the (electrodeless) microwave plasmas
generated in this work, particularly at distances as great as 5 cm from the
microwave coupler. Second, inversion of the line intensities of both the Lyman
and Balmer series, again, at distances up to 5 cm from the coupler, were
observed. The line inversion suggests the existence of a hitherto unknown
source of pumping of the optical power in plasmas. Finally, it is notable that
other aspects of the plasma including the OH* rotational temperature and low
electron concentrations are quite typical of plasmas of this type.Comment: 27 pages, 7 figure
Abundant Methanol Masers but no New Evidence for Star Formation in GCM0.253+0.016
We present new observations of the quiescent giant molecular cloud
GCM0.253+0.016 in the Galactic center, using the upgraded Karl G. Jansky Very
Large Array. Observations were made at wavelengths near 1 cm, at K (24 to 26
GHz) and Ka (27 and 36 GHz) bands, with velocity resolutions of 1-3 km/s and
spatial resolutions of ~0.1 pc, at the assumed 8.4 kpc distance of this cloud.
The continuum observations of this cloud are the most sensitive yet made, and
reveal previously undetected emission which we attribute primarily to free-free
emission from external ionization of the cloud. In addition to the sensitive
continuum map, we produce maps of 12 molecular lines: 8 transitions of NH3 --
(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7) and (9,9), as well as the HC3N (3-2)
and (4-3) lines, and CH3OH 4(-1) - 3(0) the latter of which is known to be a
collisionally-excited maser. We identify 148 CH3OH 4(-1) - 3(0) (36.2 GHz)
sources, of which 68 have brightness temperatures in excess of the highest
temperature measured for this cloud (400 K) and can be confirmed to be masers.
The majority of these masers are concentrated in the southernmost part of the
cloud. We find that neither these masers nor the continuum emission in this
cloud provide strong evidence for ongoing star formation in excess of that
previously inferred by the presence of an H2O maser.Comment: 33 pages, 4 tables, 9 figures; ApJ Accepte
Epitaxial Ferromagnetic Nanoislands of Cubic GdN in Hexagonal GaN
Periodic structures of GdN particles encapsulated in a single crystalline GaN
matrix were prepared by plasma assisted molecular beam epitaxy. High resolution
X-ray diffractometery shows that GdN islands, with rock salt structure are
epitaxially oriented to the wurtzite GaN matrix. Scanning transmission electron
microscopy combined with in-situ reflection high energy electron diffraction
allows for the study of island formation dynamics, which occurs after 1.2
monolayers of GdN coverage. Magnetometry reveals two ferromagnetic phases, one
due to GdN particles with Curie temperature of 70K and a second, anomalous room
temperature phase.Comment: 4 pages, 3 figure
Spatio-temporal patterns in the Hantavirus infection
We present a model of the infection of Hantavirus in deer mouse, Peromyscus
maniculatus, based on biological observations of the system in the North
American Southwest. The results of the analysis shed light on relevant
observations of the biological system, such as the sporadical disappearance of
the infection, and the existence of foci or ``refugia'' that perform as
reservoirs of the virus when environmental conditions are less than optimal.Comment: 6 pages, 5 inlined figures, RevTeX 4 forma
Extinction toward the Compact HII Regions G-0.02-0.07
The four HII regions in the Sgr A East complex: A, B, C, and D, represent
evidence of recent massive star formation in the central ten parsecs. Using
Paschen-alpha images taken with HST and 8.4 GHz VLA data, we construct an
extinction map of A-D, and briefly discuss their morphology and location.Comment: 2 pages, 1 figure. To be published in the Astronomical Society of the
Pacific Conference Series Proceedings of the Galactic Center Workshop 2009,
Shangha
Global adaptation in networks of selfish components: emergent associative memory at the system scale
In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning
Magnon Mediated Electric Current Drag Across a Ferromagnetic Insulator Layer
In a semiconductor hererostructure, the Coulomb interaction is responsible
for the electric current drag between two 2D electron gases across an electron
impenetrable insulator. For two metallic layers separated by a ferromagnetic
insulator (FI) layer, the electric current drag can be mediated by a
nonequilibrium magnon current of the FI. We determine the drag current by using
the semiclassical Boltzmann approach with proper boundary conditions of
electrons and magnons at the metal-FI interface.Comment: 13 pages, 2 figures: to appear in PR
Fluorescent carbon dioxide indicators
Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future
- …