1,223 research outputs found

    On the Critical Behavior of the Uniform Susceptibility of a Fermi Liquid Near an Antiferromagnetic Transition with Dynamic Exponent z=2 z = 2

    Full text link
    We compute the leading behavior of the uniform magnetic susceptibility, χ\chi, of a Fermi liquid near an antiferromagnetic transition with dynamic exponent z=2z=2. Our calculation clarifies the role of triangular ``anomaly'' graphs in the theory and justifies the effective action used in previous work \cite{Hertz}. We find that at the z=2z=2 critical point of a two dimensional material, limq→0χ(q,0)=χ0−DTlim_{q \rightarrow 0} \chi (q,0) = \chi_0 - D T with χ0\chi_0 and DD nonuniversal constants. For reasonable band structures we find that in a weak coupling approximation DD is small and positive. Our result suggests that the behavior observed in the quantum critical regime of underdoped high-TcT_c superconductors are difficult to explain in a z=2z=2 theory.Comment: 12 pages, uuencoded Postscript fil

    On the Bilayer Coupling in the Yttrium-Barium Family of High Temperature Superconductors

    Full text link
    We present and solve a model for the susceptibility of two CuO2 planes coupled by an interplane coupling J_perp and use the results to analyze a recent "cross-relaxation" NMR experiment on Y2Ba4Cu7O15. We deduce that in this material the product of J_perp and the maximum value of the in-plane susceptibility chi_max varies from approximately 0.2 at T = 200 K to 0.4 at T = 120 K and that this implies the existence of a temperature dependent in-plane spin correlation length. Using estimates of chi_max from the literature we find 5 meV < J_perp < 20 meV. We discuss the relation of the NMR results to neutron scattering results which have been claimed to imply that in YBa2Cu3O_{6+x} the two planes of a bilayer are perfectly anticorrelated. We also propose that the recently observed 41 meV excitation in YBa2Cu3O7 is an exciton pulled down below the superconducting gap by J_perp.Comment: 11 pages, 3 postscript figures (uuencoded and compressed

    Kepler and the Kuiper Belt

    Full text link
    The proposed field-of-view of the Kepler mission is at an ecliptic latitude of ~55 degrees, where the surface density of scattered Kuiper Belt Objects (KBOs) is a few percent that in the ecliptic plane. The rate of occultations of Kepler target stars by scattered KBOs with radii r>10km is ~10^-6 to 10^-4 per star per year, where the uncertainty reflects the current ignorance of the thickness of the scattered KBO disk and the faint-end slope of their magnitude distribution. These occultation events will last only ~0.1% of the planned t_exp=15 minute integration time, and thus will appear as single data points that deviate by tiny amounts. However, given the target photometric accuracy of Kepler, these deviations will nevertheless be highly significant, with typical signal-to-noise ratios of ~10. I estimate that 1-20 of the 10^5 main-sequence stars in Kepler's field-of-view will exhibit detectable occultations during its four-year mission. For unresolved events, the signal-to-noise of individual occultations scales as t_exp^{-1/2}, and the minimum detectable radius could be decreased by an order of magnitude to ~1 km by searching the individual 3-second readouts for occultations. I propose a number of methods by which occultation events may be differentiated from systematic effects. Kepler should measure or significantly constrain the frequency of highly-inclined, ~10 km-sized KBOs.Comment: 5 pages, 1 figure. No changes. Accepted to ApJ, to appear in the August 1, 2004 issue (v610
    • …
    corecore