36 research outputs found

    Towards a Clinically Relevant Lentiviral Transduction Protocol for Primary Human CD34+ Hematopoietic Stem/Progenitor Cells

    Get PDF
    Background: Hematopoietic stem cells (HSC), in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multipotency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34 + HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin. Methodology/Principal Findings: Using commercially available G-CSF mobilized peripheral blood (PB) CD34 + cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, prestimulation time, multiplicity of infection (MOI), transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV) carrying enhanced green fluorescent protein (GFP) was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin. Conclusions/Significance: This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34 + cells

    Progress in gene therapy for neurological disorders

    Get PDF
    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy

    The hypotension evoked by visceral nociception is mediated by delta opioid receptors in the periaqdeductal gray

    No full text
    This study tested the hypothesis that the ventrolateral column of the midbrain periaqueductal gray (vlPAG) region mediates the hypotension and bradycardia evoked by visceral nociception. To test this, the local anesthetic lidocaine (2%; 0.5 mul) was microinjected into the vlPAG of halothane-anesthetized rats bilaterally and visceral nociception was induced 2 min later by injecting 5% acetic acid (0.5 ml) intraperitoneally. Acetic acid injection caused an abrupt fall in arterial pressure (-12.2 +/- 2.1 mm Hg) and heart rate (-37 +/- 93 bpm) lasting approximately 15 min. Lidocaine injection into the vlPAG prevented the fall in arterial pressure and heart rate completely. Cobalt chloride (5 mM; 0.2 or 0.5 mul) injection into the vlPAG also prevented nociceptive hypotension but it did not affect the fall in heart rate significantly. Lidocaine pretreatment also inhibited the depressor response caused by intramuscular formalin (5%; 0.2 ml) administration, a model of deep somatic nociception, although it did not prevent the response completely. To determine if opioid receptors mediate the response, selective mu, delta or kappa opioid receptor antagonists were microinjected into the vlPAG 5 min before intraperitoneal (ip) acetic acid administration. Naltrindole, a delta receptor antagonist, inhibited the response significantly but mu and kappa antagonists were completely ineffective. Lidocaine and naltrindole had no effect when injected into the dorsolateral PAG and did not influence cardiovascular function when injected into the vlPAG of saline treated control animals. These data support the hypothesis that the vlPAG mediates the depressor response evoked by visceral nociception and indicate that delta opioid receptors participate in the response

    Glycyl-glutamine (β-endorphin30-31) inhibits morphine-induced dopamine efflux in the nucleus accumbens

    No full text
    Glycyl-glutamine (Gly-Gln) is an endogenous dipeptide that is synthesized from beta-endorphin post-translationally. Previously, we showed that Gly-Gln prevents acquisition of morphine-conditioned place preference, a behavioral test of morphine reward, but does not interfere with morphine analgesia. In this study, we tested the hypothesis that Gly-Gln inhibits morphine reward by blocking morphine-induced dopamine efflux in the nucleus accumbens (NAc). Extracellular dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) were sampled by microdialysis and analyzed by high-performance liquid chromatography with electrochemical detection. Guide cannulas were implanted in the right NAc and left lateral ventricle of male Sprague-Dawley rats stereotaxically. Approximately 24 h later, a microdialysis probe was inserted into the NAc and perfused at 1 A mu l/min. Gly-Gln (1, 3, 30, or 100 nmol/5 A mu l) or saline was administered intracerebroventricularly, morphine (2.5 mg/kg) was injected intraperitoneally (i.p.) 2 min later, and extracellular dopamine and DOPAC were sampled at 20-min intervals. Morphine administration increased extracellular dopamine concentrations by approximately 600% within 40 min. Gly-Gln pretreatment inhibited the rise in extracellular dopamine in a dose-related manner; the lowest significantly inhibitory dose was 1 nmol. Gly-Gln also inhibited the morphine-induced rise in extracellular DOPAC concentrations but did not affect extracellular dopamine or DOPAC in control animals. Gly-Gln (100 nmol/5 A mu l) prevented morphine-induced dopamine efflux in rats treated with morphine chronically (10 mg/kg, i.p. twice daily for 6 days), although it did not affect DOPAC concentrations significantly. These data support the hypothesis that Gly-Gln abolishes the rewarding effect of morphine by inhibiting the ability of morphine to stimulate dopamine release in the NAc
    corecore