2,138 research outputs found
Progressive internal gravity waves with bounded upper surface climbing a triangular obstacle
In this paper we discuss a theoretical model for the interfacial profiles of
progressive non-linear waves which result from introducing a triangular
obstacle, of finite height, attached to the bottom below the flow of a
stratified, ideal, two layer fluid, bounded from above by a rigid boundary. The
derived equations are solved by using a nonlinear perturbation method. The
dependence of the interfacial profile on the triangular obstacle size, as well
as its dependence on some flow parameters, such as the ratios of depths and
densities of the two fluids, have been studied
Quantum driven Bounce of the future Universe
It is demonstrated that due to back-reaction of quantum effects, expansion of
the universe stops at its maximum and takes a turnaround. Later on, it
contracts to a very small size in finite future time. This phenomenon is
followed by a " bounce" with re-birth of an exponentially expanding
non-singular universe
Measuring Black Hole Spin using X-ray Reflection Spectroscopy
I review the current status of X-ray reflection (a.k.a. broad iron line)
based black hole spin measurements. This is a powerful technique that allows us
to measure robust black hole spins across the mass range, from the stellar-mass
black holes in X-ray binaries to the supermassive black holes in active
galactic nuclei. After describing the basic assumptions of this approach, I lay
out the detailed methodology focusing on "best practices" that have been found
necessary to obtain robust results. Reflecting my own biases, this review is
slanted towards a discussion of supermassive black hole (SMBH) spin in active
galactic nuclei (AGN). Pulling together all of the available XMM-Newton and
Suzaku results from the literature that satisfy objective quality control
criteria, it is clear that a large fraction of SMBHs are rapidly-spinning,
although there are tentative hints of a more slowly spinning population at high
(M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of
the spins of stellar-mass black holes in X-ray binaries. In general,
reflection-based and continuum-fitting based spin measures are in agreement,
although there remain two objects (GROJ1655-40 and 4U1543-475) for which that
is not true. I end this review by discussing the exciting frontier of
relativistic reverberation, particularly the discovery of broad iron line
reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and
MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk
reflection, this detection of reverberation demonstrates that future large-area
X-ray observatories such as LOFT will make tremendous progress in studies of
strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The
Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds
a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the
referencing of the discovery of soft lags in 1H0707-495 (which were in fact
first reported in Fabian et al. 2009
The Influence of Free Quintessence on Gravitational Frequency Shift and Deflection of Light with 4D momentum
Based on the 4D momentum, the influence of quintessence on the gravitational
frequency shift and the deflection of light are examined in modified
Schwarzschild space. We find that the frequency of photon depends on the state
parameter of quintessence : the frequency increases for and
decreases for . Meanwhile, we adopt an integral power number
() to solve the orbital equation of photon. The photon's
potentials become higher with the decrease of . The behavior of
bending light depends on the state parameter sensitively. In
particular, for the case of , there is no influence on the
deflection of light by quintessence. Else, according to the H-masers of GP-A
redshift experiment and the long-baseline interferometry, the constraints on
the quintessence field in Solar system are presented here.Comment: 12 pages, 2 figures, 4 tables. European Physical Journal C in pres
Non linear equation of state and effective phantom divide in brane models
Here, DGP model of brane-gravity is analyzed and compared with the standard
general relativity and Randall-Sundrum cases using non-linear equation of
state. Phantom fluid is known to violate the weak energy condition. In this
paper, it is found that this characteristic of phantom energy is affected
drastically by the negative brane-tension of the RS-II model. It is
found that in DGP model strong energy condition(SEC) is always violated and the
universe accelerates only where as in RS-II model even SEC is not violated for
and the universe decelerates
Cosmological evolution of interacting dark energy in Lorentz violation
The cosmological evolution of an interacting scalar field model in which the
scalar field interacts with dark matter, radiation, and baryon via Lorentz
violation is investigated. We propose a model of interaction through the
effective coupling . Using dynamical system analysis, we study the
linear dynamics of an interacting model and show that the dynamics of critical
points are completely controlled by two parameters. Some results can be
mentioned as follows. Firstly, the sequence of radiation, the dark matter, and
the scalar field dark energy exist and baryons are sub dominant. Secondly, the
model also allows the possibility of having a universe in the phantom phase
with constant potential. Thirdly, the effective gravitational constant varies
with respect to time through . In particular, we consider a simple
case where has a quadratic form and has a good agreement with the
modified CDM and quintessence models. Finally, we also calculate the
first post--Newtonian parameters for our model.Comment: 14 pages, published versio
Phenomenology of GUT-less Supersymmetry Breaking
We study models in which supersymmetry breaking appears at an intermediate
scale, M_{in}, below the GUT scale. We assume that the soft
supersymmetry-breaking parameters of the MSSM are universal at M_{in}, and
analyze the morphology of the constraints from cosmology and collider
experiments on the allowed regions of parameter space as M_{in} is reduced from
the GUT scale. We present separate analyses of the (m_{1/2},m_0) planes for
tan(beta)=10 and tan(beta)=50, as well as a discussion of non-zero trilinear
couplings, A_0. Specific scenarios where the gaugino and scalar masses appear
to be universal below the GUT scale have been found in mirage-mediation models,
which we also address here. We demand that the lightest neutralino be the LSP,
and that the relic neutralino density not conflict with measurements by WMAP
and other observations. At moderate values of M_{in}, we find that the allowed
regions of the (m_{1/2},m_0) plane are squeezed by the requirements of
electroweak symmetry breaking and that the lightest neutralino be the LSP,
whereas the constraint on the relic density is less severe. At very low M_{in},
the electroweak vacuum conditions become the dominant constraint, and a
secondary source of astrophysical cold dark matter would be necessary to
explain the measured relic density for nearly all values of the soft
SUSY-breaking parameters and tan(beta). We calculate the neutralino-nucleon
cross sections for viable scenarios and compare them with the present and
projected limits from direct dark matter searches.Comment: 35 pages, 9 figures; typos corrected, references adde
Condensate cosmology -- dark energy from dark matter
Imagine a scenario in which the dark energy forms via the condensation of
dark matter at some low redshift. The Compton wavelength therefore changes from
small to very large at the transition, unlike quintessence or metamorphosis. We
study CMB, large scale structure, supernova and radio galaxy constraints on
condensation by performing a 4 parameter likelihood analysis over the Hubble
constant and the three parameters associated with Q, the condensate field:
Omega_Q, w_f and z_t (energy density and equation of state today, and redshift
of transition). Condensation roughly interpolates between Lambda CDM (for large
z_t) and sCDM (low z_t) and provides a slightly better fit to the data than
Lambda CDM. We confirm that there is no degeneracy in the CMB between H and z_t
and discuss the implications of late-time transitions for the Lyman-alpha
forest. Finally we discuss the nonlinear phase of both condensation and
metamorphosis, which is much more interesting than in standard quintessence
models.Comment: 13 pages, 13 colour figures. Final version with discussion of TE
cross-correlation spectra for condensation and metamorphosis in light of the
WMAP result
Study of KS KL Coupled Decays and KL -Be Interactions with the CMD-2 Detector at VEPP-2M Collider
The integrated luminosity about 4000 inverse nanobarn of around phi meson
mass ( 5 millions of phi mesons) has been collected with the CMD-2 detector at
the VEPP-2M collider. A latest analysis of the KS KL coupled decays based on 30
% of available data is presented in this paper.
The KS KL pairs from phi meson decays were reconstructed in the drift chamber
when both kaons decayed into two charged particles. From a sample of 1423
coupled decays a selection of candidates to the CP violating KL into pi+ pi-
decay was performed. CP violating decays were not identified because of the
domination of events with a KL regenerating at the Be beam pipe into KS and a
background from KL semileptonic decays.
The regeneration cross section of 110 MeV/c KL mesons was found to be 53 +-
17 mb in agreement with theoretical expectations. The angular distribution of
KS mesons after regeneration and the total cross section of KL for Be have been
measured.Comment: 14 pages, 8 figure
WMAP-Compliant Benchmark Surfaces for MSSM Higgs Bosons
We explore `benchmark surfaces' suitable for studying the phenomenology of
Higgs bosons in the minimal supersymmetric extension of the Standard Model
(MSSM), which are chosen so that the supersymmetric relic density is generally
compatible with the range of cold dark matter density preferred by WMAP and
other observations. These benchmark surfaces are specified assuming that
gaugino masses m_{1/2}, soft trilinear supersymmetry-breaking parameters A_0
and the soft supersymmetry-breaking contributions m_0 to the squark and slepton
masses are universal, but not those associated with the Higgs multiplets (the
NUHM framework). The benchmark surfaces may be presented as M_A-tan_beta planes
with fixed or systematically varying values of the other NUHM parameters, such
as m_0, m_{1/2}, A_0 and the Higgs mixing parameter mu. We discuss the
prospects for probing experimentally these benchmark surfaces at the Tevatron
collider, the LHC, the ILC, in B physics and in direct dark-matter detection
experiments. An Appendix documents developments in the FeynHiggs code that
enable the user to explore for her/himself the WMAP-compliant benchmark
surfaces.Comment: Minor corrections, references added. 43 pages, 10 figures. Version to
appear in JHE
- …
