4,310 research outputs found

    Assessment of torque components in brushless permanent-magnet machines through numerical analysis of the electromagnetic field

    Get PDF
    For the calculation of torque in brushless (BL) alternating current motors a local method is proposed, based on the Maxwell stress theory and the filtered contributions due to the harmonics of the magnetic vector potential in the motor air gap. By considering the space fundamental field only, the method can efficiently estimate the average synchronous torque for a variety or motor topologies, including concentrated winding designs. For BL direct current motor analysis a global method is introduced, based on the virtual work principle expressed in terms of energy components in various motor regions. The method leads to simplifications in the average torque calculation and enables the direct identification of the cogging and ripple components. The mathematical procedures have been validated against experiments and other numerical techniques

    Analysis and design of a two-speed single-phase induction motor with 2 and 18 pole special windings

    Get PDF
    The motor presented employs multiple independent windings for operation with two very different pole numbers. The 18-pole field is produced with a symmetrical three-phase winding connected in a Steinmetz arrangement to a single-phase supply. A unified analysis method has been developed and used to demonstrate the equivalence of a Steinmetz delta or star connection with a main and auxiliary winding of a single-phase motor. The method has been experimentally validated and also included are some specific motor design considerations

    Computation of core losses in electrical machines using improved models for laminated steel

    Get PDF
    Two new models for specific power losses in cold-rolled motor lamination steel are described together with procedures for coefficient identification from standard multifrequency Epstein or single sheet tests. The eddy-current and hysteresis loss coefficients of the improved models are dependent on induction (flux density) and/or frequency, and the errors are substantially lower than those of conventional models over a very wide range of sinusoidal excitation, from 20 Hz to 2 kHz and from 0.05 up to 2 T. The model that considers the coefficients to be variable, with the exception of the hysteresis loss power coefficient that has a constant value of 2, is superior in terms of applicability and phenomenological support. Also included are a comparative study of the material models on three samples of typical steel, mathematical formulations for the extension from the frequency to the time domain, and examples of validation from electrical machine studies

    On the variation with flux and frequency of the core loss coefficients in electrical machines

    Get PDF
    A model of core losses, in which the hysteresis coefficients are variable with the frequency and induction (flux density) and the eddy-current and excess loss coefficients are variable only with the induction, is proposed. A procedure for identifying the model coefficients from multifrequency Epstein tests is described, and examples are provided for three typical grades of non-grain-oriented laminated steel suitable for electric motor manufacturing. Over a wide range of frequencies between 20-400 Hz and inductions from 0.05 to 2 T, the new model yielded much lower errors for the specific core losses than conventional models. The applicability of the model for electric machine analysis is also discussed, and examples from an interior permanent-magnet and an induction motor are included

    CHANDRA Observations of X-ray Jet Structure on kpc to Mpc Scales

    Full text link
    With its exquisite spatial resolution of better than 0.5 arcsecond, the Chandra observatory is uniquely capable of resolving and studying the spatial structure of extragalactic X-ray jets on scales of a few to a few hundred kilo-parsec. Our analyses of four recent Chandra images of quasar jets interpret the X-ray emission as inverse Compton scattering of high energy electrons on the cosmic microwave background. We infer that these jets are in bulk relativistic motion, carrying kinetic powers upwards of 10^46 ergs/s to distances of hundreds of kpc, with very high efficiency.Comment: 4 pages, 3 figures, to be published in the proceedings of the Bologna jet workshop, "The Physics of Relativistic Jets in the CHANDRA and XMM Era.

    Vector lattice model for stresses in granular materials

    Full text link
    A vector lattice model for stresses in granular materials is proposed. A two dimensional pile built by pouring from a point is constructed numerically according to this model. Remarkably, the pile violates the Mohr Coulomb stability criterion for granular matter, probably because of the inherent anisotropy of such poured piles. The numerical results are also compared to the earlier continuum FPA model and the (scalar) lattice qq-model

    Shot noise of spin polarized electrons

    Full text link
    The shot noise of spin polarized electrons is shown to be generically dependent upon spin-flip processes. Such a situation represents perhaps the simplest instance where the two-particle character of current fluctuations out of equilibrium is explicit, leading to trinomial statistics of charge transfer in a single channel model. We calculate the effect of spin-orbit coupling, magnetic impurities, and precession in an external magnetic field on the noise in the experimentally relevant cases of diffusive wires and lateral semiconductor dots, finding dramatic enhancements of the Fano factor. The possibility of using the shot noise to measure the spin-relaxation time in an open mesoscopic system is raised.Comment: Published version. Minor clarifications and correction

    An overview of jets and outflows in stellar mass black holes

    Full text link
    In this book chapter, we will briefly review the current empirical understanding of the relation between accretion state and and outflows in accreting stellar mass black holes. The focus will be on the empirical connections between X-ray states and relativistic (`radio') jets, although we are now also able to draw accretion disc winds into the picture in a systematic way. We will furthermore consider the latest attempts to measure/order jet power, and to compare it to other (potentially) measurable quantities, most importantly black hole spin.Comment: Accepted for publication in Space Science Reviews. Also to appear in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    The balance of power: accretion and feedback in stellar mass black holes

    Full text link
    In this review we discuss the population of stellar-mass black holes in our galaxy and beyond, which are the extreme endpoints of massive star evolution. In particular we focus on how we can attempt to balance the available accretion energy with feedback to the environment via radiation, jets and winds, considering also possible contributions to the energy balance from black hole spin and advection. We review quantitatively the methods which are used to estimate these quantities, regardless of the details of the astrophysics close to the black hole. Once these methods have been outlined, we work through an outburst of a black hole X-ray binary system, estimating the flow of mass and energy through the different accretion rates and states. While we focus on feedback from stellar mass black holes in X-ray binary systems, we also consider the applicability of what we have learned to supermassive black holes in active galactic nuclei. As an important control sample we also review the coupling between accretion and feedback in neutron stars, and show that it is very similar to that observed in black holes, which strongly constrains how much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture Notes in Physics. Springer 201

    Spin splitting and precession in quantum dots with spin-orbit coupling: the role of spatial deformation

    Get PDF
    Extending a previous work on spin precession in GaAs/AlGaAs quantum dots with spin-orbit coupling, we study the role of deformation in the external confinement. Small elliptical deformations are enough to alter the precessional characteristics at low magnetic fields. We obtain approximate expressions for the modified gg factor including weak Rashba and Dresselhaus spin-orbit terms. For more intense couplings numerical calculations are performed. We also study the influence of the magnetic field orientation on the spin splitting and the related anisotropy of the gg factor. Using realistic spin-orbit strengths our model calculations can reproduce the experimental spin-splittings reported by Hanson et al. (cond-mat/0303139) for a one-electron dot. For dots containing more electrons, Coulomb interaction effects are estimated within the local-spin-density approximation, showing that many features of the non-iteracting system are qualitatively preserved.Comment: 7 pages, 7 figure
    corecore