182 research outputs found
The influence of strange quarks on QCD phase diagram and chemical freeze-out: Results from the hadron resonance gas model
We confront the lattice results on QCD phase diagram for two and three
flavors with the hadron resonance gas model. Taking into account the
truncations in the Taylor-expansion of energy density done on the
lattice at finite chemical potential , we find that the hadron resonance
gas model under the condition of constant describes very well the
lattice phase diagram. We also calculate the chemical freeze-out curve
according to the entropy density . The -values are taken from lattice QCD
simulations with two and three flavors. We find that this condition is
excellent in reproducing the experimentally estimated parameters of the
chemical freeze-out.Comment: 5 pages, 3 figures and 1 table Talk given at VIIIth international
conference on ''Strangeness in Quark Matter'' (SQM 2004), Cape Town, South
Africa, Sep. 15-20 200
Entropy for Color Superconductivity in Quark Matter
We study a model for color superconductivity with both three colors and
massless flavors including quark pairing. By using the Hamiltonian in the
color-flavor basis we can calculate the quantum entropy. From this we are able
to further investigate the phases of the color superconductor, for which we
find a rather sharp transition to color superconductivity above a chemical
potential around MeV.Comment: 10 pages, 2 eps-figure
Conditions driving chemical freeze-out
We propose the entropy density as the thermodynamic condition driving best
the chemical freeze-out in heavy-ion collisions. Taking its value from lattice
calculations at zero chemical potential, we find that it is excellent in
reproducing the experimentally estimated freeze-out parameters. The two
characteristic endpoints in the freeze-out diagram are reproduced as well.Comment: 8 pages, 5 eps figure
The Effects of Quantum Entropy on the Bag Constant
The effects of quantum entropy on the bag constant are studied at low
temperatures and small chemical potentials. The inclusion of the quantum
entropy of the quarks in the equation of state provides the hadronic bag with
an additional heat which causes a decrease in the effective latent heat inside
the bag. We have considered two types of baryonic bags, and
. In both cases we have found that the bag constant without the
quantum entropy almost does not change with the temperature and the quark
chemical potential. The contribution from the quantum entropy to the equation
of state clearly decreases the value of the bag constant.Comment: 7 pages, 2 figures (two parts each
The QCD phase diagram: A comparison of lattice and hadron resonance gas model calculations
We compare the lattice results on QCD phase diagram for two and three flavors
with the hadron resonance gas model (HRGM) calculations. Lines of constant
energy density have been determined at different baryo-chemical
potentials . For the strangeness chemical potentials , we use two
models. In one model, we explicitly set for all temperatures and
baryo-chemical potentials. This assignment is used in lattice calculations. In
the other model, is calculated in dependence on and
according to the condition of vanishing strangeness. We also derive an
analytical expression for the dependence of on by applying
Taylor expansion of . In both cases, we compare HRGM results on
diagram with the lattice calculations. The agreement is excellent,
especially when the trigonometric function of is truncated up to the
same order as done in lattice simulations. For studying the efficiency of the
truncated Taylor expansion, we calculate the radius of convergence. For zero-
and second-order radii, the agreement with lattice is convincing. Furthermore,
we make predictions for QCD phase diagram for non-truncated expressions and
physical masses. These predictions are to be confirmed by heavy-ion experiments
and future lattice calculations with very small lattice spacing and physical
quark masses.Comment: 25 pages, 8 eps figure
Quantum Entanglement in Second-quantized Condensed Matter Systems
The entanglement between occupation-numbers of different single particle
basis states depends on coupling between different single particle basis states
in the second-quantized Hamiltonian. Thus in principle, interaction is not
necessary for occupation-number entanglement to appear. However, in order to
characterize quantum correlation caused by interaction, we use the eigenstates
of the single-particle Hamiltonian as the single particle basis upon which the
occupation-number entanglement is defined. Using the proper single particle
basis, we discuss occupation-number entanglement in important eigenstates,
especially ground states, of systems of many identical particles. The
discussions on Fermi systems start with Fermi gas, Hatree-Fock approximation,
and the electron-hole entanglement in excitations. The entanglement in a
quantum Hall state is quantified as -fln f-(1-f)ln(1-f), where f is the proper
fractional part of the filling factor. For BCS superconductivity, the
entanglement is a function of the relative momentum wavefunction of the Cooper
pair, and is thus directly related to the superconducting energy gap. For a
spinless Bose system, entanglement does not appear in the
Hatree-Gross-Pitaevskii approximation, but becomes important in the Bogoliubov
theory.Comment: 11 pages. Journal versio
Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au collisions at 200, 62.4, and 39 GeV
We present measurements of elliptic flow () of electrons from the decays
of heavy-flavor hadrons () by the STAR experiment. For Au+Au collisions
at 200 GeV we report , for transverse momentum
() between 0.2 and 7 GeV/c using three methods: the event plane method
({EP}), two-particle correlations ({2}), and four-particle
correlations ({4}). For Au+Au collisions at = 62.4 and
39 GeV we report {2} for GeV/c. {2} and {4} are
non-zero at low and intermediate at 200 GeV, and {2} is consistent
with zero at low at other energies. The {2} at the two lower beam
energies is systematically lower than at 200 GeV for
GeV/c. This difference may suggest that charm quarks interact less
strongly with the surrounding nuclear matter at those two lower energies
compared to GeV.Comment: Version accepted by PR
International longitudinal registry of patients with atrial fibrillation and treated with rivaroxaban: RIVaroxaban Evaluation in Real life setting (RIVER)
Background
Real-world data on non-vitamin K oral anticoagulants (NOACs) are essential in determining whether evidence from randomised controlled clinical trials translate into meaningful clinical benefits for patients in everyday practice. RIVER (RIVaroxaban Evaluation in Real life setting) is an ongoing international, prospective registry of patients with newly diagnosed non-valvular atrial fibrillation (NVAF) and at least one investigator-determined risk factor for stroke who received rivaroxaban as an initial treatment for the prevention of thromboembolic stroke. The aim of this paper is to describe the design of the RIVER registry and baseline characteristics of patients with newly diagnosed NVAF who received rivaroxaban as an initial treatment.
Methods and results
Between January 2014 and June 2017, RIVER investigators recruited 5072 patients at 309 centres in 17 countries. The aim was to enroll consecutive patients at sites where rivaroxaban was already routinely prescribed for stroke prevention. Each patient is being followed up prospectively for a minimum of 2-years. The registry will capture data on the rate and nature of all thromboembolic events (stroke / systemic embolism), bleeding complications, all-cause mortality and other major cardiovascular events as they occur. Data quality is assured through a combination of remote electronic monitoring and onsite monitoring (including source data verification in 10% of cases). Patients were mostly enrolled by cardiologists (n = 3776, 74.6%), by internal medicine specialists 14.2% (n = 718) and by primary care/general practice physicians 8.2% (n = 417). The mean (SD) age of the population was 69.5 (11.0) years, 44.3% were women. Mean (SD) CHADS2 score was 1.9 (1.2) and CHA2DS2-VASc scores was 3.2 (1.6). Almost all patients (98.5%) were prescribed with once daily dose of rivaroxaban, most commonly 20 mg (76.5%) and 15 mg (20.0%) as their initial treatment; 17.9% of patients received concomitant antiplatelet therapy. Most patients enrolled in RIVER met the recommended threshold for AC therapy (86.6% for 2012 ESC Guidelines, and 79.8% of patients according to 2016 ESC Guidelines).
Conclusions
The RIVER prospective registry will expand our knowledge of how rivaroxaban is prescribed in everyday practice and whether evidence from clinical trials can be translated to the broader cross-section of patients in the real world
Kinin B1 Receptor Enhances the Oxidative Stress in a Rat Model of Insulin Resistance: Outcome in Hypertension, Allodynia and Metabolic Complications
BACKGROUND: Kinin B(1) receptor (B(1)R) is induced by the oxidative stress in models of diabetes mellitus. This study aims at determining whether B(1)R activation could perpetuate the oxidative stress which leads to diabetic complications. METHODS AND FINDINGS: Young Sprague-Dawley rats were fed with 10% D-Glucose or tap water (controls) for 8-12 weeks. A selective B(1)R antagonist (SSR240612) was administered acutely (3-30 mg/kg) or daily for a period of 7 days (10 mg/kg) and the impact was measured on systolic blood pressure, allodynia, protein and/or mRNA B(1)R expression, aortic superoxide anion (O(2)(*-)) production and expression of superoxide dismutase (MnSOD) and catalase. SSR240612 reduced dose-dependently (3-30 mg/kg) high blood pressure in 12-week glucose-fed rats, but had no effect in controls. Eight-week glucose-fed rats exhibited insulin resistance (HOMA index), hypertension, tactile and cold allodynia and significant increases of plasma levels of glucose and insulin. This was associated with higher aortic levels of O(2)(*-), NADPH oxidase activity, MnSOD and catalase expression. All these abnormalities including B(1)R overexpression (spinal cord, aorta, liver and gastrocnemius muscle) were normalized by the prolonged treatment with SSR240612. The production of O(2)(*-) in the aorta of glucose-fed rats was also measured in the presence and absence of inhibitors (10-100 microM) of NADPH oxidase (apocynin), xanthine oxidase (allopurinol) or nitric oxide synthase (L-NAME) with and without Sar[D-Phe(8)]des-Arg(9)-BK (20 microM; B(1)R agonist). Data show that the greater aortic O(2)(*-) production induced by the B(1)R agonist was blocked only by apocynin. CONCLUSIONS: Activation of kinin B(1)R increased O(2)(*-) through the activation of NADPH oxidase in the vasculature. Prolonged blockade of B(1)R restored cardiovascular, sensory and metabolic abnormalities by reducing oxidative stress and B(1)R gene expression in this model
- …