395 research outputs found

    Algorithms Used to Update State Soil Survey

    Get PDF
    While seasonal weather can be the difference between a good and a bad harvest, it is the soil that moderates the long-term productivity of a field. The inherent properties of soils are vital to know when it comes to management practices on any agricultural landscape

    SciTokens: Capability-Based Secure Access to Remote Scientific Data

    Full text link
    The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    3D Tracking via Body Radio Reflections

    Get PDF
    This paper introduces WiTrack, a system that tracks the 3D motion of a user from the radio signals reflected off her body. It works even if the person is occluded from the WiTrack device or in a different room. WiTrack does not require the user to carry any wireless device, yet its accuracy exceeds current RF localization systems, which require the user to hold a transceiver. Empirical measurements with a WiTrack prototype show that, on average, it localizes the center of a human body to within 10 to 13 cm in the x and y dimensions, and 21 cm in the z dimension. It also provides coarse tracking of body parts, identifying the direction of a pointing hand with a median of 11.2 degrees. WiTrack bridges a gap between RF-based localization systems which locate a user through walls and occlusions, and human-computer interaction systems like WiTrack, which can track a user without instrumenting her body, but require the user to stay within the direct line of sight of the device

    Integrating Sheep Grazing into Cereal-Based Crop Rotations: Spring Wheat Yields and Weed Communities

    Get PDF
    Crop diversification and integration of livestock into cropping systems may improve the economic and environmental sustainability of agricultural systems. However, few studies have examined the integration of these practices in the semiarid areas of the Northern Great Plains (NGP). A 3-yr experiment was conducted near Bozeman, MT, to compare the effects of crop rotation diversity and weed management practices imposed during fallow periods [sheep (Ovis aries) grazing, reduced tillage, and conventional tillage] on spring wheat (Triticum aestivum L.) yields and weed pressure. Management treatments were applied to replicated whole plots, within which the split-plots received crop rotation treatments [continuous spring wheat (CSW) and a 3-yr rotation of annual forage, fallow, and spring wheat, where each phase was present in each year]. In the initial 2 yr, the realized rotational treatments were wheat–fallow and CSW. In the final year, wheat was grown following all phases of the diversified rotation. Yields were similar among management treatments within the wheat–fallow and CSW rotations. Weed pressure was generally low but perennial weeds were more abundant in grazing-managed, wheat–fallow systems. The integration of livestock into the annual hay crop–fallow–spring wheat rotation was associated with a nearly 30-fold increase in weed pressure and a yield reduction of 51.2% compared to conventional management. The results suggest that although targeted sheep grazing is a viable alternative to conventional fallow management in CSW and wheat–fallow rotations, successful integration of livestock in diversified cropping systems requires more effective weed management practices

    Sheep Grazing Influence Soil Microbial and Particulate Organic Carbon in Dryland Cropping Systems

    Get PDF
    Sheep grazing may influence soil C fractions by consuming crop residue and weeds and returning C through feces and urine to the soil. We examined the effect of sheep grazing compared with tillage and herbicide application for weed control on soil microbial biomass C (MBC), potential C mineralization (PCM), and particulate organic C (POC) in relation to soil organic C (SOC) at the 0-30 cm depth in a Blackmore silt loam under dryland cropping systems from 2009 to 2011 in southwestern Montana, USA. Treatments were three weed management practices (sheep grazing [grazing], herbicide application [chemical], and tillage [mechanical]) and two cropping sequences (continuous spring wheat [CSW] and spring wheat-pea/barley mixture hay-fallow [W-P/B-F]). The MBC at 0-5 cm was greater in mechanical with CSW than grazing with CSW or mechanical with W-P/B-F in 2010 and 2011. Averaged across years, POC at 0-5 cm was greater in grazing than chemical with W-P/B-F, at 5-15 cm was greater in chemical than grazing with CSW, and at 15-30 cm was greater in grazing than chemical and mechanical with CSW. The PCM/SOC ratio at 15-30 cm was greater in mechanical than grazing with CSW. At all depths, MBC, PCM, and POC decreased from 2009 to 2011 regardless of treatments, except for MBC in mechanical with CSW at 0-5 cm which increased. Lower proportion of labile than nonlabile organic matter returned to the soil through feces and urine probably reduced microbial biomass and activity, but increased coarse soil organic matter with sheep grazing compared with herbicide application and tillage. Sheep grazing may improve soil health and quality in the long term by enhancing microbial biomass and C storage compared with tillage and herbicide application for weed control under dryland cropping systems

    Assessing Quantitative and Qualitative Approaches to Measure Program Outcomes in Human Service Organizations

    Get PDF
    Leadership and organizational performance are interconnected, and in many cases the two go hand in hand. In nonprofit organizations, leaders are expected to guide and produce positive program outcomes that reflect the mission of the organization. One problem nonprofit leaders face, however, is how to measure program outcomes. What metrics, including impact measurement and performance measurement, of outcomes are available for nonprofit leaders to use? How does a leader know if his or her nonprofit is performing well? Are there any new frameworks or models to consider that may help with this problem? This paper addresses these questions by exploring the nonprofit literature on performance measurement specific to human service organizations. In addition, the paper creates three frameworks that can be used by nonprofit leaders to help measure their program outcomes

    A dosimetric comparison of four treatment planning methods for high grade glioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High grade gliomas (HGG) are typically treated with a combination of surgery, radiotherapy and chemotherapy. Three dimensional (3D) conformal radiotherapy treatment planning is still the main stay of treatment for these patients. New treatment planning methods suggest better dose distributions and organ sparing but their clinical benefit is unclear. The purpose of the current study was to compare normal tissue sparing and tumor coverage using four different radiotherapy planning methods in patients with high grade glioma.</p> <p>Methods</p> <p>Three dimensional conformal (3D), sequential boost IMRT, integrated boost (IB) IMRT and Tomotherapy (TOMO) treatment plans were generated for 20 high grade glioma patients. T1 and T2 MRI abnormalities were used to define GTV and CTV with 2 and 2.5 cm margins to define PTV1 and PTV2 respectively.</p> <p>Results</p> <p>The mean dose to PTV2 but not to PTV1 was less then 95% of the prescribed dose with IB and IMRT plans. The mean doses to the optic chiasm and the ipsilateral globe were highest with 3D plans and least with IB plans. The mean dose to the contralateral globe was highest with TOMO plans. The mean of the integral dose (ID) to the brain was least with the IB plan and was lower with IMRT compared to 3D plans. The TOMO plans had the least mean D10 to the normal brain but higher mean D50 and D90 compared to IB and IMRT plans. The mean D10 and D50 but not D90 were significantly lower with the IMRT plans compared to the 3D plans.</p> <p>Conclusion</p> <p>No single treatment planning method was found to be superior to all others and a personalized approach is advised for planning and treating high-grade glioma patients with radiotherapy. Integral dose did not reflect accurately the dose volume histogram (DVH) of the normal brain and may not be a good indicator of delayed radiation toxicity.</p

    Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FLAIR and T2 weighted MRIs are used based on institutional preference to delineate high grade gliomas and surrounding edema for radiation treatment planning. Although these sequences have inherent physical differences there is limited data on the clinical and dosimetric impact of using either or both sequences.</p> <p>Methods</p> <p>40 patients with high grade gliomas consecutively treated between 2002 and 2008 of which 32 had pretreatment MRIs with T1, T2 and FLAIR available for review were selected for this study. These MRIs were fused with the treatment planning CT. Normal structures, clinical tumor volume (CTV) and planning tumor volume (PTV) were then defined on the T2 and FLAIR sequences. A Venn diagram analysis was performed for each pair of tumor volumes as well as a fractional component analysis to assess the contribution of each sequence to the union volume. For each patient the tumor volumes were compared in terms of total volume in cubic centimeters as well as anatomic location using a discordance index. The overlap of the tumor volumes with critical structures was calculated as a measure of predicted toxicity. For patients with MRI documented failures, the tumor volumes obtained using the different sequences were compared with the recurrent gross tumor volume (rGTV).</p> <p>Results</p> <p>The FLAIR CTVs and PTVs were significantly larger than the T2 CTVs and PTVs (p < 0.0001 and p = 0.0001 respectively). Based on the discordance index, the abnormality identified using the different sequences also differed in location. Fractional component analysis showed that the intersection of the tumor volumes as defined on both T2 and FLAIR defined the majority of the union volume contributing 63.6% to the CTV union and 82.1% to the PTV union. T2 alone uniquely identified 12.9% and 5.2% of the CTV and PTV unions respectively while FLAIR alone uniquely identified 25.7% and 12% of the CTV and PTV unions respectively. There was no difference in predicted toxicity to normal structures using T2 or FLAIR. At the time of analysis, 26 failures had occurred of which 19 patients had MRIs documenting the recurrence. The rGTV correlated best with the FLAIR CTV but the percentage overlap was not significantly different from that with T2. There was no statistical difference in the percentage overlap with the rGTV and the PTVs generated using either T2 or FLAIR.</p> <p>Conclusions</p> <p>Although both T2 and FLAIR MRI sequences are used to define high grade glial neoplasm and surrounding edema, our results show that the volumes generated using these techniques are different and not interchangeable. These differences have bearing on the use of intensity modulated radiation therapy (IMRT) and highly conformal treatment as well as on future clinical trials where the bias of using one technique over the other may influence the study outcome.</p
    • …
    corecore