1,241 research outputs found
Cosmological Birefringence: an Astrophysical test of Fundamental Physics
We review the methods used to test for the existence of cosmological
birefringence, i.e. a rotation of the plane of linear polarization for
electromagnetic radiation traveling over cosmological distances, which might
arise in a number of important contexts involving the violation of fundamental
physical principles. The main methods use: (1) the radio polarization of radio
galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and
(3) the cosmic microwave background polarization. We discuss the main results
obtained so far, the advantages and disadvantages of each method, and future
prospects.Comment: To appear in the Proceedings of the JENAM 2010 Symposium "From
Varying Couplings to Fundamental Physics", held in Lisbon, 6-10 Sept. 201
Recommended from our members
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4×10-48 cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3×10-43 cm2 (7.1×10-42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
ARPES: A probe of electronic correlations
Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct
methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a
sample illuminated with sufficiently high-energy radiation, one can gain
information on both the energy and momentum of the electrons propagating inside
a material. This is of vital importance in elucidating the connection between
electronic, magnetic, and chemical structure of solids, in particular for those
complex systems which cannot be appropriately described within the
independent-particle picture. Among the various classes of complex systems, of
great interest are the transition metal oxides, which have been at the center
stage in condensed matter physics for the last four decades. Following a
general introduction to the topic, we will lay the theoretical basis needed to
understand the pivotal role of ARPES in the study of such systems. After a
brief overview on the state-of-the-art capabilities of the technique, we will
review some of the most interesting and relevant case studies of the novel
physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental
Techniques", edited by A. Avella and F. Mancini, Springer Series in
Solid-State Sciences (2013). A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf.
arXiv admin note: text overlap with arXiv:cond-mat/0307085,
arXiv:cond-mat/020850
Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory
Data from the Sudbury Neutrino Observatory have been used to constrain the
lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The
analysis was based on a search for gamma-rays from the de-excitation of the
residual nucleus that would result from the disappearance of either a proton or
neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90%
confidence for either neutron or proton decay modes. This is about an order of
magnitude more stringent than previous constraints on invisible proton decay
modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of
2) Submitted to Physical Review Letter
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Increasing physical activity in postpartum multiethnic women in Hawaii: results from a pilot study
<p>Abstract</p> <p>Background</p> <p>Mothers of an infant are much less likely to exercise regularly compared to other women. This study tested the efficacy of a brief tailored intervention to increase physical activity (PA) in women 3–12 months after childbirth. The study used a pretest-posttest design. Sedentary women (n = 20) were recruited from a parenting organization. Half the participants were ethnic minorities, mean age was 33 ± 3.8, infants' mean age was 6.9 ± 2.4 months, 50% were primiparas, and mean body mass index was 23.6 ± 4.2.</p> <p>Methods</p> <p>The two-month intervention included telephone counseling, pedometers, referral to community PA resources, social support, email advice on PA/pedometer goals, and newsletters.</p> <p>The primary outcome of the study was minutes per week of moderate and vigorous leisure-time physical activity measured by the Godin physical activity instrument.</p> <p>Results</p> <p>All women (100%) returned for post-test measures; thus, paired t-tests were used for pre-post increase in minutes of moderate and vigorous leisure-time physical activity and comparisons of moderate and vigorous leisure-time physical activity increases among ethnic groups. At baseline participants' reported a mean of 3 ± 13.4 minutes per week moderate and vigorous leisure-time physical activity. At post-test this significantly increased to 85.5 ± 76.4 minutes per week of moderate and vigorous leisure-time physical activity (p < .001, Cohen's d = 2.2; effect size r = 0.7). There were no differences in pre to post increases in minutes of moderate and vigorous leisure-time physical activity among races.</p> <p>Conclusion</p> <p>A telephone/email intervention tailored to meet the needs of postpartum women was effective in increasing physical activity levels. However, randomized trials comparing tailored telephone and email interventions to standard care and including long-term follow-up to determine maintenance of physical activity are warranted.</p
Weight, physical activity and dietary behavior change in young mothers : short term results of the HeLP-her cluster randomized controlled trial
BackgroundPreventing weight gain rather than treating established obesity is an important economic and public health response to the rapidly increasing rates of obesity worldwide. Treatment of established obesity is complex and costly requiring multiple resources. Preventing weight gain potentially requires fewer resources to reach broad population groups, yet there is little evidence for successful interventions to prevent weight gain in the community. Women with children are an important target group because of high rates of weight gain and the potential to influence the health behaviors in family members.MethodsThe aim of this cluster randomized controlled trial was to evaluate the short term effect of a community-based self-management intervention to prevent weight gain. Two hundred and fifty mothers of young children (mean age 40 years ± 4.5, BMI 27.9 kg/m2 ± 5.6) were recruited from the community in Melbourne, Australia. The intervention group (n = 127) attended four interactive group sessions over 4 months, held in 12 local primary schools in 2006, and was compared to a group (n = 123) receiving a single, non-interactive, health education session. Data collection included self-reported weight (both groups), measured weight (intervention only), self-efficacy, dietary intake and physical activity.ResultsMean measured weight decreased significantly in the intervention group (-0.78 kg 95% CI; -1.22 to -0.34, p < 0.001). Comparing groups using self-reported weight, both the intervention and comparison groups decreased weight, -0.75 kg (95% CI; -1.57 to 0.07, p = 0.07) and -0.72 kg (95% CI; -1.59 to 0.14 p = 0.10) respectively with no significant difference between groups (-0.03 kg, 95% CI; -1.32 to 1.26, p = 0.95). More women lost or maintained weight in the intervention group. The intervention group tended to have the greatest effect in those who were overweight at baseline and in those who weighed themselves regularly. Intervention women who rarely self-weighed gained weight (+0.07 kg) and regular self-weighers lost weight (-1.66 kg) a difference of -1.73 kg (95% CI; -3.35 to -0.11 p = 0.04). The intervention reported increased physical activity although the difference between groups did not reach significance. Both groups reported replacing high fat foods with low fat alternatives and self-efficacy deteriorated in the comparison group only.ConclusionBoth a single health education session and interactive behavioral intervention will result in a similar weight loss in the short term, although more participants in the interactive intervention lost or maintained weight. There were small non-significant changes to physical activity and changes to fat intake specifically replacing high fat foods with low fat alternatives such as fruit and vegetables. Self-monitoring appears to enhance weight loss when part of an intervention.<br /
- …