3,741 research outputs found

    Synthetic tethered silver nanoparticles on reduced graphene oxide for alkaline oxygen reduction catalysis

    Get PDF
    There is currently an enormous drive to move away from the use of Pt group metals in catalysis, particularly for fuel cells, because of their increasing rarity and cost. Simultaneously, there have been advances in the application of graphene supported nanoparticular catalysts. However, these Pt-free, graphene supported catalysts can be complex to produce, show poor catalytic activity and degrade quickly due to particle agglomeration or isolation. Herein, we report a one-pot synthesis of silver nanoparticles (NPs) tethered to a reduced graphene oxide (rGO) template via organic linkages. This is one of the few silver precursor formations that have been combined with graphene oxide (GO) to simultaneously establish linkage binding sites, reduce GO and yield tethered nanoparticles. These materials are shown to efficiently catalyze the oxygen reduction reaction in alkaline environments, with aminoethanol linkages to 21.55 ± 2.88 nm Ag particles exhibiting the highest catalytic activity via the four-electron pathway. This method, therefore, offers a straightforward route to produce effective catalysts from inexpensive precursors, which could be developed further for significant industrial application

    Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties

    Get PDF
    Understanding and ultimately controlling the properties of the solid–electrolyte interphase (SEI) layer at the graphite anode/liquid electrolyte boundary are of great significance for maximizing the performance and lifetime of lithium-ion batteries (LIBs). However, comprehensive in situ monitoring of SEI formation and evolution, alongside measurement of the corresponding mechanical properties, is challenging due to the limitations of the characterization techniques commonly used. This work provides a new insight into SEI formation during the first lithiation and delithiation of graphite battery anodes using operando electrochemical atomic force microscopy (EC-AFM). Highly oriented pyrolytic graphite (HOPG) is investigated first as a model system, exhibiting unique morphological and nanomechanical behavior dependent on the various electrolytes and commercially relevant additives used. Then, to validate these findings with respect to real-world battery electrodes, operando EC-AFM of individual graphite particles like those in commercial systems are studied. Vinylene carbonate (VC) and fluoroethylene carbonate (FEC) are shown to be effective additives to enhance SEI layer stability in 1 M LiPF6/ethylene carbonate/ethyl methyl carbonate (EC/EMC) electrolytes, attributed to their role in improving its structure, density, and mechanical strength. This work therefore presents an unambiguous picture of SEI formation in a real battery environment, contributes a comprehensive insight into SEI formation of electrode materials, and provides a visible understanding of the influence of electrolyte additives on SEI formation

    The Use of Graphitic Carbon Nitride Based Composite Anodes for Lithium-Ion Battery Applications

    Get PDF
    Graphitic carbon nitride (gCN) is shown to undergo lithium insertion reactions applicable with lithium-ion battery anodes. Lithium capacity was found to be substantially lower than theoretically expected, so the properties of gCN composited with conducting graphite (CG), which was added to improve the performance, were investigated. The electrodes exhibited a systematic increase in lithium uptake with CG content, but the capacity never exceeded that of graphite. It is shown that electron transport via conducting pathways was limiting. Li+ uptake for 10 % gCN was similar to a graphite electrode, indicating that gCN does play a role in determining the storage capacity

    Reductions in global biodiversity loss predicted from conservation spending

    Get PDF
    Halting global biodiversity loss is central to both the Convention on Biological Diversity (CBD) and United Nations Sustainable Development Goals (SDGs)1,2, but success to date has been very limited3–5. A critical determinant of overall strategic success (or failure) is the financing committed to biodiversity6–9; however, financing decisions are still hindered by considerable uncertainty over what any investment is likely to achieve6–9.. For greater effectiveness, we need an evidence-based model (EBM)10–12 showing how conservation spending quantitatively reduces the rate of loss. Here, we empirically quantify how i$14.4 billion of conservation investment reduced biodiversity loss across 109 signatory countries between 1996 and 2008, by an average 29% per country. We also show that biodiversity change in signatory countries can be predicted with high accuracy, using a dual model that combines the positive impact of conservation investment with the negative impact of economic, agricultural and population growth (i.e. human development pressures)13–18. Decision-makers can use this dual model to forecast the improvement that any proposed biodiversity budget would achieve under various scenarios of human development pressure, comparing those forecasts to any chosen policy target (including the CBD and SDGs). Importantly, we further find that spending impacts shrink as human development pressures grow, implying that funding may need to increase over time. The model therefore offers a flexible tool for balancing the SDGs of human development and biodiversity, by predicting the dynamic changes needed in conservation finance as human development proceeds

    Speciesistic Veganism: An Anthropocentric Argument

    Get PDF
    The paper proposes an anthropocentric argument for veganism based on a speciesistic premise that most carnists likely affirm: human flourishing should be promoted. I highlight four areas of human suffering promoted by a carnistic diet: (1) health dangers to workers (both physical and psychological), (2) economic dangers to workers, (3) physical dangers to communities around slaughterhouses, and (4) environmental dangers to communities-at-large. Consequently, one could ignore the well-being of non-human animals and nevertheless recognize significant moral failings in the current standard system of meat production

    Six topics on inscribable polytopes

    Full text link
    Inscribability of polytopes is a classic subject but also a lively research area nowadays. We illustrate this with a selection of well-known results and recent developments on six particular topics related to inscribable polytopes. Along the way we collect a list of (new and old) open questions.Comment: 11 page

    Engineering Catalyst Layers for Next-Generation Polymer Electrolyte Fuel Cells: A Review of Design, Materials, and Methods

    Get PDF
    Polymer electrolyte fuel cells (PEFCs) are a promising replacement for the fossil fuel–dependent automotive and energy sectors. They have become increasingly commercialized in the last decade; however, significant limitations on durability and performance limit their commercial uptake. Catalyst layer (CL) design is commonly reported to impact device power density and durability; although, a consensus is rarely reached due to differences in testing conditions, experimental design, and types of data reported. This is further exacerbated by aspects of CL design such as catalyst support, proton conduction, catalyst, fabrication, and morphology, being significantly interdependent; hence, a wider appreciation is required in order to optimize performance, improve durability, and reduce costs. Here, the cutting-edge research within the field of PEFCs is reviewed, investigating the effect of different manufacturing techniques, electrolyte distribution, support materials, surface chemistries, and total porosity on power density and durability. These are critically appraised from an applied perspective to inform the most relevant and promising pathways to make and test commercially viable cells. This holistic view of the competing aspects of CL design and preparation will facilitate the development of optimized CLs, especially the incorporation of novel catalyst support materials

    A new high: Cannabis as a budding source of carbon-based materials for electrochemical power sources

    Get PDF
    Cannabis sativa L., a low-cost, fast-growing herbaceous plant, is seeing a resurgence in widespread cultivation as a result of new policies and product drive. Its biodegradable and environmentally benign nature coupled with its high specific surface area and three-dimensional hierarchal structure makes it an excellent candidate for use as a biomass-derived carbon material for electrochemical power sources. It is proposed that this ‘wonder crop’ could have an important role in the energy transition by providing high-functioning carbon-based materials for electrochemistry. In this article, all instances of C. sativa usage in batteries, fuel cells and supercapacitors are discussed with a focus on highlighting the high capacity, rate capability, capacitance, current density and half-wave potential that can be achieved with its utilisation in the field

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present
    • …
    corecore