8 research outputs found

    Comparative In Vitro Sensitivities of Human Immune Cell Lines, Vaginal and Cervical Epithelial Cell Lines, and Primary Cells to Candidate Microbicides Nonoxynol 9, C31G, and Sodium Dodecyl Sulfate

    No full text
    In experiments to assess the in vitro impact of the candidate microbicides nonoxynol 9 (N-9), C31G, and sodium dodecyl sulfate (SDS) on human immune and epithelial cell viability, cell lines and primary cell populations of lymphocytic and monocytic origin were generally shown to be equally sensitive to exposures ranging from 10 min to 48 h. However, U-937 cells were more sensitive to N-9 and C31G after 48 h than were primary monocyte-derived macrophages. Cytokine activation of monocytes and lymphocytes had no effect on cell viability following exposure to these microbicidal compounds. Primary and passaged vaginal epithelial cultures and cell lines differed in sensitivity to N-9 and C31G but not SDS. These studies provide a foundation for in vitro experiments in which cell lines of human immune and epithelial origin can be used as suitable surrogates for primary cells to further investigate the effects of microbicides on cell metabolism, membrane composition, and integrity and the effects of cell type, proliferation, and differentiation on microbicide sensitivity

    Critical Design Features of Phenyl Carboxylate-Containing Polymer Microbicides

    No full text
    Recent studies of cellulose-based polymers substituted with carboxylic acids like cellulose acetate phthalate (CAP) have demonstrated the utility of using carboxylic acid groups instead of the more common sulfate or sulfonate moieties. However, the pK(a) of the free carboxylic acid group is very important and needs careful selection. In a polymer like CAP the pK(a) is approximately 5.28. This means that under the low pH conditions found in the vaginal lumen, CAP would be only minimally soluble and the carboxylic acid would not be fully dissociated. These issues can be overcome by substitution of the cellulose backbone with a moiety whose free carboxylic acid group(s) has a lower pK(a). Hydroxypropyl methylcellulose trimellitate (HPMCT) is structurally similar to CAP; however, its free carboxylic acids have pK(a)s of 3.84 and 5.2. HPMCT, therefore, remains soluble and molecularly dispersed at a much lower pH than CAP. In this study, we measured the difference in solubility and dissociation between CAP and HPMCT and the effect these parameters might have on antiviral efficacy. Further experiments revealed that the degree of acid substitution of the cellulose backbone can significantly impact the overall efficacy of the polymer, thereby demonstrating the need to optimize any prospective polymer microbicide with respect to pH considerations and the degree of acid substitution. In addition, we have found HPMCT to be a potent inhibitor of CXCR4, CCR5, and dual tropic strains of human immunodeficiency virus in peripheral blood mononuclear cells. Therefore, the data presented herein strongly support further evaluation of an optimized HPMCT variant as a candidate microbicide

    In Vitro Preclinical Testing of Nonoxynol-9 as Potential Anti-Human Immunodeficiency Virus Microbicide: a Retrospective Analysis of Results from Five Laboratories

    No full text
    The first product to be clinically evaluated as a microbicide contained the nonionic surfactant nonoxynol-9 (nonylphenoxypolyethoxyethanol; N-9). Many laboratories have used N-9 as a control compound for microbicide assays. However, no published comparisons of the results among laboratories or attempts to establish standardized protocols for preclinical testing of microbicides have been performed. In this study, we compared results from 127 N-9 toxicity and 72 efficacy assays that were generated in five different laboratories over the last six years and were performed with 14 different cell lines or tissues. Intra-assay reproducibility was measured at two-, three-, and fivefold differences using standard deviations. Interassay reproducibility was assessed using general linear models, and interaction between variables was studied using step-wise regression. The intra-assay reproducibility within the same N-9 concentration, cell type, assay duration, and laboratory was consistent at the twofold level of standard deviations. For interassay reproducibility, cell line, duration of assay, and N-9 concentration were all significant sources of variability (P < 0.01). Half-maximal toxicity concentrations for N-9 were similar between laboratories for assays of similar exposure durations, but these similarities decreased with lower test concentrations of N-9. Results for both long (>24 h) and short (<2 h) exposures of cells to N-9 showed variability, while assays with 4 to 8 h of N-9 exposure gave results that were not significantly different. This is the first analysis to compare preclinical N-9 toxicity levels that were obtained by different laboratories using various protocols. This comparative work can be used to develop standardized microbicide testing protocols that will help advance potential microbicides to clinical trials
    corecore