42 research outputs found
A Systematic Review and Meta-Analysis of Crossover Studies Comparing Physiological, Perceptual and Performance Measures Between Treadmill and Overground Running
Background Treadmills are routinely used to assess running performance and training parameters related to physiological or perceived effort. These measurements are presumed to replicate overground running but there has been no systematic review comparing performance, physiology and perceived effort between treadmill and overground running. Objective The objective of this systematic review was to compare physiological, perceptual and performance measures between treadmill and overground running in healthy adults.MethodsAMED (Allied and Contemporary Medicine), CINAHL (Cumulative Index to Nursing and Allied Health), EMBASE, MEDLINE, SCOPUS, SPORTDiscus and Web of Science databases were searched from inception until May 2018. Included studies used a crossover study design to compare physiological (oxygen uptake [VO-2], heart rate [HR], blood lactate concentration [La]), perceptual (rating of perceived exertion [RPE] and preferred speed) or running endurance and sprint performance (i.e. time trial duration or sprint speed) outcomes between treadmill (motorised or non-motorised) and overground running. Physiological outcomes were considered across submaximal, near-maximal and maximal running intensity subgroups. Meta-analyses were used to determine mean difference (MD) or standardised MD (SMD) 95% confidence intervals. Results Thirty-four studies were included. Twelve studies used a 1% grade for the treadmill condition and three used grades >1%. Similar (V) over dotO(2) but lower La occurred during submaximal motorised treadmill running at 0% ((V) over dot O-2 MD: -0.55 0.93mL/kg/min; La MD: -1.26 +/- 0.71mmol/L) and 1% ((V) over dotO(2) MD: 0.37 +/- 1.12mL/kg/min; La MD: -0.52 +/- 0.50mmol/L) grade than during overground running. HR and RPE during motorised treadmill running were higher at faster submaximal speeds and lower at slower submaximal speeds than during overground running. (V) over dotO(2) (MD: -1.25 +/- 2.09mL/kg/min) and La (MD: -0.54 +/- 0.63mmol/L) tended to be lower, but HR (MD: 0 +/- 1bpm), and RPE (MD: -0.4 +/- 2.0units [6-20 scale]) were similar during near-maximal motorised treadmill running to during overground running. Maximal motorised treadmill running caused similar (V) over dotO(2) (MD: 0.78 +/- 1.55mL/kg/min) and HR (MD: -1 +/- 2bpm) to overground running. Endurance performance was poorer (SMD: -0.50 +/- 0.36) on a motorised treadmill than overground but sprint performance varied considerably and was not significantly different (MD: -1.4 +/- 5.8km/h). Conclusions Some, but not all, variables differ between treadmill and overground running, and may be dependent on the running speed at which they are assessed. Protocol registration (PROSPERO International Prospective Register of Systematic Reviews)
Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studies
Background Treadmills are often used in research, clinical practice, and training. Biomechanical investigations comparing treadmill and overground running report inconsistent findings. Objective This study aimed at comparing biomechanical outcomes between motorized treadmill and overground running. Methods Four databases were searched until June 2019. Crossover design studies comparing lower limb biomechanics during non-inclined, non-cushioned, quasi-constant-velocity motorized treadmill running with overground running in healthy humans (18-65 years) and written in English were included. Meta-analyses and meta-regressions were performed where possible. Results 33 studies (n = 494 participants) were included. Most outcomes did not differ between running conditions. However, during treadmill running, sagittal foot-ground angle at footstrike (mean difference (MD) − 9.8° [95% confidence interval: − 13.1 to − 6.6]; low GRADE evidence), knee flexion range of motion from footstrike to peak during stance (MD 6.3° [4.5 to 8.2]; low), vertical displacement center of mass/pelvis (MD − 1.5 cm [− 2.7 to − 0.8]; low), and peak propulsive force (MD − 0.04 body weights [− 0.06 to − 0.02]; very low) were lower, while contact time (MD 5.0 ms [0.5 to 9.5]; low), knee flexion at footstrike (MD − 2.3° [− 3.6 to − 1.1]; low), and ankle sagittal plane internal joint moment (MD − 0.4 Nm/kg [− 0.7 to − 0.2]; low) were longer/higher, when pooled across overground surfaces. Conflicting findings were reported for amplitude of muscle activity. Conclusions Spatiotemporal, kinematic, kinetic, muscle activity, and muscle-tendon outcome measures are largely comparable between motorized treadmill and overground running. Considerations should, however, particularly be given to sagittal plane kinematic differences at footstrike when extrapolating treadmill running biomechanics to overground running
Validity of the Brazilian version of the Godin-Shephard Leisure-Time Physical Activity Questionnaire
Is Motorized Treadmill Running Biomechanically Comparable to Overground Running? A Systematic Review and Meta-Analysis of Cross-Over Studies
Background Treadmills are often used in research, clinical practice, and training. Biomechanical investigations comparing treadmill and overground running report inconsistent findings. Objective This study aimed at comparing biomechanical outcomes between motorized treadmill and overground running. Methods Four databases were searched until June 2019. Crossover design studies comparing lower limb biomechanics during non-inclined, non-cushioned, quasi-constant-velocity motorized treadmill running with overground running in healthy humans (18-65 years) and written in English were included. Meta-analyses and meta-regressions were performed where possible. Results 33 studies (n = 494 participants) were included. Most outcomes did not differ between running conditions. However, during treadmill running, sagittal foot-ground angle at footstrike (mean difference (MD) − 9.8° [95% confidence interval: − 13.1 to − 6.6]; low GRADE evidence), knee flexion range of motion from footstrike to peak during stance (MD 6.3° [4.5 to 8.2]; low), vertical displacement center of mass/pelvis (MD − 1.5 cm [− 2.7 to − 0.8]; low), and peak propulsive force (MD − 0.04 body weights [− 0.06 to − 0.02]; very low) were lower, while contact time (MD 5.0 ms [0.5 to 9.5]; low), knee flexion at footstrike (MD − 2.3° [− 3.6 to − 1.1]; low), and ankle sagittal plane internal joint moment (MD − 0.4 Nm/kg [− 0.7 to − 0.2]; low) were longer/higher, when pooled across overground surfaces. Conflicting findings were reported for amplitude of muscle activity. Conclusions Spatiotemporal, kinematic, kinetic, muscle activity, and muscle-tendon outcome measures are largely comparable between motorized treadmill and overground running. Considerations should, however, particularly be given to sagittal plane kinematic differences at footstrike when extrapolating treadmill running biomechanics to overground running