22,295 research outputs found
Applications of satellite data relay to problems of field seismology
A seismic signal processor was developed and tested for use with the NOAA-GOES satellite data collection system. Performance tests on recorded, as well as real time, short period signals indicate that the event recognition technique used is nearly perfect in its rejection of cultural signals and that data can be acquired in many swarm situations with the use of solid state buffer memories. Detailed circuit diagrams are provided. The design of a complete field data collection platform is discussed and the employment of data collection platforms in seismic network is reviewed
Microprogram scheme for automatic recovery from computer error
Microprogram scheme enables computer to recover from failure in one of its two central processing units during time duration of instruction in which failure occurs. Microprogram advantages include - /1/ built-in interpretive capability, /2/ selection of processing interrupts by priority, and /3/ economical use of bootstrap sequence
Quantum Pair Creation of Soliton Domain Walls
A large body of experimental evidence suggests that the decay of the false
vacuum, accompanied by quantum pair creation of soliton domain walls, can occur
in a variety of condensed matter systems. Examples include nucleation of charge
soliton pairs in density waves [eg. J. H. Miller, Jr. et al., Phys. Rev. Lett.
84, 1555 (2000)] and flux soliton pairs in long Josephon junctions. Recently,
Dias and Lemos [J. Math. Phys. 42, 3292 (2001)] have argued that the mass
of the soliton should be interpreted as a line density and a surface density,
respectively, for (2+1)-D and (3+1)-D systems in the expression for the pair
production rate. As the transverse dimensions are increased and the total mass
(energy) becomes large, thermal activation becomes suppressed, so quantum
processes can dominate even at relatively high temperatures. This paper will
discuss both experimental evidence and theoretical arguments for the existence
of high-temperature collective quantum phenomena
The Angular Momentum Operator in the Dirac Equation
The Dirac equation in spherically symmetric fields is separated in two
different tetrad frames. One is the standard cartesian (fixed) frame and the
second one is the diagonal (rotating) frame. After separating variables in the
Dirac equation in spherical coordinates, and solving the corresponding
eingenvalues equations associated with the angular operators, we obtain that
the spinor solution in the rotating frame can be expressed in terms of Jacobi
polynomials, and it is related to the standard spherical harmonics, which are
the basis solution of the angular momentum in the Cartesian tetrad, by a
similarity transformation.Comment: 13 pages,CPT-94/P.3027,late
- …