263 research outputs found
Noisy Coherent Population Trapping: Applications to Noise Estimation and Qubit State Preparation
Coherent population trapping is a well-known quantum phenomenon in a driven
system, with many applications across quantum optics. However, when a
stochastic bath is present in addition to vacuum noise, the observed trapping
is no longer perfect. Here we derive a time-convolutionless master equation
describing the equilibration of the system in the presence of
additional temporally correlated classical noise, with an unknown decay
parameter. Our simulations show a one-to-one correspondence between the decay
parameter and the depth of the characteristic dip in the photoluminescence
spectrum, thereby enabling the unknown parameter to be estimated from the
observed spectra. We apply our analysis to the problem of qubit state
initialization in a system via dark states and show how the
stochastic bath affects the fidelity of such initialization as a function of
the desired dark-state amplitudes. We show that an optimum choice of Rabi
frequencies is possible
Recommended from our members
Spirit, mind and body: the archaeology of monastic healing
Archaeology and material culture are used in this chapter to consider how monastic experience responded to illness, ageing and disability. The approach taken is influenced by the material study of religion, which interrogates how bodies and things engage to construct the sensory experience of religion, and by practice-based approaches in archaeology, which examine the active role of space and material culture in shaping religious agency and embodiment. The archaeology of monastic healing focuses on the full spectrum of healing technologies, from managing the body in order to prevent illness, through to the treatment of the sick and preparation of the corpse for burial
Binding between Crossveinless-2 and Chordin Von Willebrand Factor Type C Domains Promotes BMP Signaling by Blocking Chordin Activity
BACKGROUND: Crossveinless-2 (CV2) is an extracellular BMP modulator protein of the Chordin family, which can either enhance or inhibit BMP activity. CV2 binds to BMP2 via subdomain 1 of the first of its five N-terminal von Willebrand factor type C domains (VWC1). Previous studies showed that this BMP binding is required for the anti-, but not for the pro-BMP effect of CV2. More recently, it was shown that CV2 can also bind to the BMP inhibitor Chordin. However, it remained unclear which domains mediate this binding, and whether it accounts for an anti- or pro-BMP effect. PRINCIPAL FINDINGS: Here we report that a composite interface of CV2 consisting of subdomain 2 of VWC1 and of VWC2-4, which are dispensable for BMP binding, binds to the VWC2 domain of Chordin. Functional data obtained in zebrafish embryos indicate that this binding of Chordin is required for CV2's pro-BMP effect, which actually is an anti-Chordin effect and, at least to a large extent, independent of Tolloid-mediated Chordin degradation. We further demonstrate that CV2 mutant versions that per se are incapable of BMP binding can attenuate the Chordin/BMP interaction. CONCLUSIONS: We have physically dissected the anti- and pro-BMP effects of CV2. Its anti-BMP effect is obtained by binding to BMP via subdomain1 of the VWC1 domain, a binding that occurs in competition with Chordin. In contrast, its pro-BMP effect is achieved by direct binding to Chordin via subdomain 2 of VWC1 and VWC2-4. This binding seems to induce conformational changes within the Chordin protein that weaken Chordin's affinity to BMP. We propose that in ternary Chordin-CV2-BMP complexes, both BMP and Chordin are directly associated with CV2, whereas Chordin is pushed away from BMP, ensuring that BMPs can be more easily delivered to their receptors
Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p
The PUF family of RNA-binding proteins regulate gene expression post-transcriptionally. Saccharomyces cerevisiae Puf3p is characterised as binding nuclear-encoded mRNAs specifying mitochondrial proteins. Extensive studies of its regulation of COX17 demonstrate its role in mRNA decay. Using integrated genome-wide approaches we define an expanded set of Puf3p target mRNAs and quantitatively assessed the global impact of loss of PUF3 on gene expression using mRNA and polysome profiling and quantitative proteomics. In agreement with prior studies, our sequencing of affinity-purified Puf3-TAP associated mRNAs (RIP-seq) identified mRNAs encoding mitochondrially-targeted proteins. Additionally, we also found 720 new mRNA targets that predominantly encode proteins that enter the nucleus. Comparing transcript levels in wild-type and puf3∆ cells revealed that only a small fraction of mRNA levels alter, suggesting Puf3p determines mRNA stability for only a limited subset of its target mRNAs. Finally, proteomic and translatomic studies suggest that loss of Puf3p has widespread, but modest, impact on mRNA translation. Taken together our integrated multi-omics data point to multiple classes of Puf3p targets, which display coherent post-transcriptional regulatory properties and suggest Puf3p plays a broad, but nuanced, role in the fine-tuning of gene expression
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
Structure and Dynamics of Amyloid-β Segmental Polymorphisms
Conceived and designed the experiments: WB UH. Performed the experiments: WB. Analyzed the data: WB UH. Contributed reagents/materials/analysis tools: WB UH. Wrote the paper: WB UH.It is believed that amyloid-beta (Aβ) aggregates play a role in the pathogenesis of Alzheimer’s disease. Aβ molecules form β-sheet structures with multiple interaction sites. This polymorphism gives rise to differences in morphology, physico-chemical property and level of cellular toxicity. We have investigated the conformational stability of various segmental polymorphisms using molecular dynamics simulations and find that the segmental polymorphic models of Aβ retain a U-shaped architecture. Our results demonstrate the importance of inter-sheet side chain-side chain contacts, hydrophobic contacts among the strands (β1 and β2) and of salt bridges in stabilizing the aggregates. Residues in β-sheet regions have smaller fluctuation while those at the edge and loop region are more mobile. The inter-peptide salt bridges between Asp23 and Lys28 are strong compared to intra-chain salt bridge and there is an exchange of the inter-chain salt-bridge with intra-chain salt bridge. As our results suggest that Aβ exists under physiological conditions as an ensemble of distinct segmental polymorphs, it may be necessary to account in the development of therapeutics for Alzheimer’s disease the differences in structural stability and aggregation behavior of the various Aβ polymorphic forms.Yeshttp://www.plosone.org/static/editorial#pee
- …