12,656 research outputs found

    Tridiagonalized GUE matrices are a matrix model for labeled mobiles

    Full text link
    It is well-known that the number of planar maps with prescribed vertex degree distribution and suitable labeling can be represented as the leading coefficient of the 1N\frac{1}{N}-expansion of a joint cumulant of traces of powers of an NN-by-NN GUE matrix. Here we undertake the calculation of this leading coefficient in a different way. Firstly, we tridiagonalize the GUE matrix in the manner of Trotter and Dumitriu-Edelman and then alter it by conjugation to make the subdiagonal identically equal to 11. Secondly, we apply the cluster expansion technique (specifically, the Brydges-Kennedy-Abdesselam-Rivasseau formula) from rigorous statistical mechanics. Thirdly, by sorting through the terms of the expansion thus generated we arrive at an alternate interpretation for the leading coefficient related to factorizations of the long cycle (12n)Sn(12\cdots n)\in S_n. Finally, we reconcile the group-theoretical objects emerging from our calculation with the labeled mobiles of Bouttier-Di Francesco-Guitter.Comment: 42 pages, LaTeX, 17 figures. The present paper completely supercedes arXiv1203.3185 in terms of methods but addresses a different proble

    Covering numbers for characters of symmetric groups

    Full text link
    If n>4n>4 and c(θ)c(\theta) denotes the set of irreducible constituents of a character θ\theta, then c(χk)=Irr(Sn)c(\chi^k)={\rm Irr}(S_n) for all nonlinear χIrr(Sn)\chi\in {\rm Irr}(S_n) if and only if kn1k\geq n-1

    A Two-Coordinate Nickel Imido Complex That Effects C−H Amination

    Get PDF
    An exceptionally low coordinate nickel imido complex, (IPr*)Ni═N(dmp) (2) (dmp = 2,6-dimesitylphenyl), has been prepared by the elimination of N_2 from a bulky aryl azide in its reaction with (IPr*)Ni(η^6-C_7H_8) (1). The solid-state structure of 2 features two-coordinate nickel with a linear C−Ni−N core and a short Ni−N distance, both indicative of multiple-bond character. Computational studies using density functional theory showed a Ni═N bond dominated by Ni(dπ)−N(pπ) interactions, resulting in two nearly degenerate singly occupied molecular orbitals (SOMOs) that are Ni−N π* in character. Reaction of 2 with CO resulted in nitrene-group transfer to form (dmp)NCO and (IPr*)Ni(CO)_3 (3). Net C−H insertion was observed in the reaction of 2 with ethene, forming the vinylamine (dmp)NH(CH═CH_2) (5) via an azanickelacyclobutane intermediate, (IPr*)Ni{N,C:κ^2-N(dmp)CH_2CH_2} (4)
    corecore