172 research outputs found

    Ion channel diversity, channel expression and function in the choroid plexuses

    Get PDF
    Knowledge of the diversity of ion channel form and function has increased enormously over the last 25 years. The initial impetus in channel discovery came with the introduction of the patch clamp method in 1981. Functional data from patch clamp experiments have subsequently been augmented by molecular studies which have determined channel structures. Thus the introduction of patch clamp methods to study ion channel expression in the choroid plexus represents an important step forward in our knowledge understanding of the process of CSF secretion

    Increased North Atlantic dust deposition linked to Holocene Icelandic glacier fluctuations

    Get PDF
    Mineral dust concentrations are coupled to climate over glacial-interglacial cycles with increased dust deposition occurring during major cold phases over the last ~100 ka. Holocene records suggest considerable spatial and temporal variability in the magnitude, frequency and timing of dust peaks that reflects regional or local drivers of dust emissions and transport. Here, we present stratigraphical, geochemical and isotopic evidence for dust deposition from two high-resolution peat sequences 200 km apart in northern Scotland spanning the last c. 8200 years. εNd isotope data suggest the dominant minerogenic dust source switches between a low latitude (likely Saharan) and a high latitude, Icelandic source. Marked peaks in increased minerogenic dust deposition at: c. 5.4–5.1, 4.0–3.9, 2.8–2.6, 1.0 and 0.3 ka BP occur against a backdrop of low dust deposition during the mid-Holocene (c. 5.0–4.0 ka BP) and increased background levels of dust during the neoglacial period (<4.0 ka BP). These dust peaks coincide with periods of glacial advance in Iceland and heightened storminess in the North Atlantic. Isotope data for additional dust peaks at c. 1.0 and 0.7 ka BP and the last ~50 years suggest these reflect increased dust from the Sahara associated with aridity and land-use change in North Africa during the Late-Holocene, and modern anthropogenic sources. This work highlights the complexity of Holocene records of dust deposition in the North Atlantic and emphasises the role of dynamic sub-Polar glaciers and their meltwater systems as a significant dust source.Output Status: Forthcoming/Available Onlin

    Determination of the Relative and Absolute Configurations of the Female-produced Sex Pheromone of the Cerambycid Beetle Prionus californicus

    Get PDF
    We previously identified the basic structure of the female-produced sex attractant pheromone of the cerambycid beetle, Prionus californicus Motschulsky (Cerambycidae: Prioninae), as 3,5-dimethyldodecanoic acid. A synthesized mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was highly attractive to male beetles. Here, we describe stereoselective syntheses of three of the four possible stereoisomers, and the results of laboratory and field bioassays showing that male beetles are attracted specifically to (3R,5S)-3,5-dimethyldodecanoic acid, but not to its enantiomer, (3S,5R)-3,5-dimethyldodecanoic acid, indicating that the (3R,5S)-enantiomer is the active pheromone component. The diastereomeric (3R,5R)- and (3S,5S)-enantiomers were excluded from consideration because their gas chromatographic retention times were different from that of the insect-produced compound. The mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was as attractive to male P. californicus as the (3R,5S)-enantiomer, indicating that none of the other three stereoisomers inhibited responses to the active enantiomer. Beetles responded to as little as 10 ng and 10 μg of synthetic 3,5-dimethyldodecanoic acid in laboratory and field studies, respectively. Field studies indicated that capture rate did not increase with dosages of 3,5-dimethyldodecanoic acid greater than 100 μg. In field bioassays, males of a congeneric species, P. lecontei Lameere, were captured in southern California but not in Idaho

    Strain analysis of Ge micro disk using precession electron diffraction

    Get PDF
    The recently developed precession electron diffraction (PED) technique in scanning transmission electron microscopy has been used to elucidate the local strain distribution and crystalline misorientation in a CMOS fabricated strained Ge microdisk structure grown on a Si substrate. Tensile strained Ge and GeSn structures are considered to be potential CMOS compatible optical sources, as both Sn alloying and strain can lead to a direct band-structure and lasing. The ability to take nanometer resolution, experimental measurements of the cross-sectional strain distribution, is important to understand modal gain and, therefore, ultimate device performance. In this work, we demonstrate PED techniques to measure the cross-sectional strain field in tensile Ge microdisks strained by SiN stressors. The strain maps are interpreted and compared with a finite element model of the strain in the investigated structure, which shows good agreement, and, therefore, highlights the applicability of PED techniques for mapping strained photonic structures. The technique also allows for the observation of strain relaxation due to dislocation pileup, further demonstrating the benefit of such experimental techniques

    Caledonian hot zone magmatism in the “Newer Granites”: insight from the Cluanie and Clunes plutons, Northern Scottish Highlands

    Get PDF
    Scottish “Newer” Granites record the evolution of the Caledonides resulting from Iapetus subduction and slab breakoff during the Silurian-Devonian Scandian Orogeny, but relationships between geodynamics, petrogenesis and emplacement are incomplete. Laser ablation U-Pb results from magmatic zircons at the Cluanie Pluton (Northern Highlands) identify clusters of concordant Silurian data points. A cluster with a weighted mean 206Pb/238U age of 431.6 ± 1.3 Ma (2 confidence interval, n = 6) records emplacement whilst older points (clustered at 441.8 ± 2.3 Ma, n = 9) record deep crustal hot zone magmatism prior to ascent. The Cluanie Pluton, and its neighbour the ∼428 Ma Clunes tonalite, have adakite-like high Na, Sr/Y, La/Yb and low Mg, Ni and Cr characteristics, and lack mafic facies common in other “Newer Granites”. These geochemical signatures indicate the tapping of batches of homogenised, evolved magma from the deeper crust. The emplacement age of the Cluanie Pluton confirms volumetrically modest subduction-related magmatism occurred beneath the Northern Highlands before slab breakoff, probably as a result of crustal thickening during the ∼450 Ma Grampian 2 event. Extensive new in-situ geochemical-geochronological studies for this terrane may further substantiate the deep crustal hot zone model and the association between Caledonian magmatism and potentially metallogenesis. The term “Newer Granites” is outdated as it ignores the demonstrated relationships between magmatism, Scandian orogenesis and slab breakoff. Hence, “Caledonian intrusions” would be a more appropriate generic term to cover those bodies related to either Iapetus subduction or to slab breakoff

    Volcanological and environmental controls on the Snowdon mineralization, North Wales, UK: a failed volcanogenic massive sulfide system in the Avalon Zone of the British Caledonides

    Get PDF
    The Snowdon caldera of North Wales is host to base metal sulfide-bearing veins and stockworks, mineralized breccias, disseminated sulfides, and localized zones of semi-massive to massive sulfide, with subordinate magnetite-rich veins. The late Ordovician host volcanic sequence accumulated in a shallow marine, back-arc environment in the Welsh Basin, which forms part of the Avalon Zone of the British and Irish Caledonides. New field evidence, sulfur isotopes, and U-Pb dating indicate that the Snowdon mineralization is genetically and temporally related to Late Ordovician magmatism and caldera formation. It is interpreted to represent volcanogenic pipe-style sulfide mineralization, resulting from focused hydrothermal fluids moving along caldera-related faults and simultaneous dispersal of fluids through the volcaniclastic pile. Sulfur isotope data suggest that, whilst a limited contribution of magmatic S cannot be ruled out, thermochemical reduction of contemporaneous Ordovician seawater sulfate was the dominant mechanism for sulfide production in the Snowdon system, resulting in a mean value of about 12‰ in both the host volcanic strata and the mineralized veins. Despite the tectonic setting being prospective for VMS deposits, strata-bound sulfide accumulations are absent in the caldera. This is attributed to the shallow water depths, which promoted boiling and the formation of sub-seafloor vein-type mineralization. Furthermore, the tectonic instability of the caldera and the high energy, shallow marine environment would have limited preservation of any seafloor deposits. The new U-Pb dates for the base (454.26 ± 0.35 Ma) and top (454.42 ± 0.45 Ma) of the host volcanic rocks, indicate that the Snowdon magmatic activity was short lived, which is likely to have limited the duration and areal extent of the ore-forming system. The absence of massive sulfide mineralization is consistent with the general paucity of economic VMS deposits in the Avalon Zone. Despite the highly prospective geological setting this study further illustrates the importance of volcanic facies mapping and associated paleo-environmental interpretations in VMS exploration

    The Workshop Tutorial project book launch during the 2003 UniServe Science Conference

    Get PDF
    The Workshop Tutorial project has grown in answer to the perceived need to provide students with an opportunity to use and discuss principles of physics and their applications in a learning environment that encourages interaction with peers and supervising staff. In this manner the Workshops compliment the large traditional lectures that students are expected to attend. The style of the questions and activities are chosen to provide a mixture of quantitative and qualitative conceptbased questions and concrete hands-on activities. Reference to research in physics education on student misconceptions has been made in formulating questions (Sharma, Millar and Seth 1999)

    Mechanisms controlling the localisation of fault‐controlled hydrothermal dolomitisation, Derbyshire Platform, UK

    Get PDF
    The Derbyshire Platform is a Mississippian aged flat-topped, steep sided platform that forms the westernmost expression of the Derbyshire-East Midlands Platform. On the south-east platform margin, 60 km2 of Visean limestone has been dolomitised, forming two distinct bodies. One of these bodies forms along a major NW–SE trending basement fault and smaller, associated, N–S trending faults and fractures. This study uses outcrop, petrographic and geochemical analysis to better constrain the timing and mechanism for this fault-controlled dolomitisation. Field relationships demonstrate dolomitisation was multi-phase and initiated after the main phase of matrix pore-occluding calcite cementation on the Derbyshire Platform and terminated prior to the main phase of mineralisation. Fluids are interpreted to have fluxed from adjacent basins, primarily along strike-slip crustal faults that were reactivated during basin inversion at the onset of the Variscan Orogeny. Fluid supply was episodic and progressively confined to fractures as matrix porosity became occluded. The study demonstrates the complex interplay between basin kinematics, host rock permeability and timing of fluid supply through seismic valving along faults that connect the carbonate platform to basin compartments. This ultimately controlled the position of dolomite geobodies along faults and provides a record of fluid flow during the transition from thermal subsidence to post-rift basin inversion. The findings have implications for the exploration of both minerals and hydrocarbon within dolomitised host rocks and can inform studies of fluid transfer and reaction on carbonate platforms within the burial realm

    Protein content prediction in single wheat kernels using hyperspectral imaging

    Get PDF
    Hyperspectral imaging (HSI) combines Near-infrared (NIR) spectroscopy and digital imaging to give information about the chemical properties of objects and their spatial distribution. Protein content is one of the most important quality factors in wheat. It is known to vary widely depending on the cultivar, agronomic and climatic conditions. However, little information is known about single kernel protein variation within batches. The aim of the present work was to measure the distribution of protein content in whole wheat kernels on a single kernel basis, and to apply HSI to predict this distribution. Wheat samples from 2013 and 2014 harvests were sourced from UK millers and wheat breeders, and individual kernels were analysed by HSI and by the Dumas combustion method for total protein content. HSI was applied in the spectral region 980-2500 nm in reflectance mode using the push-broom approach. Single kernel spectra were used to develop partial least squares (PLS) regression models for protein prediction of intact single grains. The protein content ranged from 6.2 to 19.8% (“as-is” basis), with significantly higher values for hard wheats. The performance of the calibration model was evaluated using the coefficient of determination (R2) and the root mean square error (RMSE) from 3250 samples used for calibration and 868 used for external validation. The calibration performance for single kernel protein content was R2 of 0.82 and 0.79, and RMSE of 0.86 and 0.94% for the calibration and validation dataset, enabling quantification of the protein distribution between kernels and even visualisation within the same kernel. The performance of the single kernel measurement was poorer than that typically obtained for bulk samples, but is acceptable for some specific applications. The use of separate calibrations built by separating hard and soft wheat, or on kernels placed on similar orientation did not greatly improve the prediction ability. We simulated the use of the lower cost InGaAs detector (1000-1700 nm), and reported that the use of proposed HgCdTe detectors over a restricted spectral range gave a lower prediction error (RMSEC=0.86% vs 1.06%, for HgCdTe and InGaAs, respectively), and 26 increased R2 value (Rc2=0.82 vs 0.73)
    corecore