42 research outputs found
The effects of remediation treatments application on the sediment heavy metal immobilization
Predmet izučavanja ove disertacije, osim poređenja različitih metoda procene rizika na osnovu karakterizacije kvaliteta sedimenta vodotokova Vojvodine, bilo je i ispitivanje mogućnosti imobilizacije teških metalau sedimentu primenom različitih remedijacionih tehnika kao i određivanje njihove efikasnosti (npr. solidifikacija/stabilizacija silikatnim materijalima, portland cementom, kalcijum-oksidom itd.) u zavisnosti od brojnih faktora. Osim pseudo-ukupnog sadržaja metala određene su i specifičnije frakcije metala sa posebnim osvrtom na određivanje potencijalno biodostupnih frakcija. Rezultati su ukazali da je naosnovu holandskih preporuka sediment pojedinih vodotokova Vojvodine (Begej, DTD-kanal,Nadela, Sava-Šabac) zagađen metalima (klasa 4) i da je neohodno izmuljivanje i remedijacija. Prema USEPA i kanadskim preporukama, neki uzorci su potencijalno toksični, ali nije zabeležena akutna toksičnost za test vrste u pornoj vodi. Za neke uzorke, i pored visoke pseudo-ukupne koncentracije (klasa 4), nije potvrđena potencijalna toksičnost na osnovu odnosa kiselog volatilnog sulfida i simultano ekstrahovanih metala. Dok se ne primene skuplje metode remedijacije i tretmana sedimenta, najbolje rešenje je izolovano skladištenje na specijalnim deponijama. Naredni koraci bi trebali da budu usresređeni na kontrolu i sprečavanje zagađenja kako bi se obezbedilo da revitalizacija ovih vodotoka ima trajni pozitivan uticaj na životnu sredinu i nesmetanu i bezbednu plovidbu, kao i na primenu određenih remedijacionih metoda. Poređenje rezultata koji su dobijeni različitim procenama kvaliteta sedimenta pokazalo je da ponekad nije dovoljan jedan pristup i da je potrebno je uključiti metode procene biodostupnosti, biotestove i aspekt radioaktivnosti. U uzorku sedimenta koji je korišćen za ispitivanje efikasnosti remedijacionih tretmana, pokazano je da cink, nikal i olovo imaju visok rizik po okolinu, jer seprocenat metala u izmenljivoj i karbonatnoj fazi kretao od 40.1 do 45.2%. Cr i Cd imaju umeren rizik, dok je bakar prisutan u ovim frakcijama u koncentraciji koja predviđa nizak rizik (5.3%). Ovo je u skladu i sa rezultatima analize porne vode i simultano ekstrahovanih metala i kiselog volatilnog sulfida. Istraživanje prikazano u radu je dalo odgovor na pitanje da li remedijacija može uspešno da ukloni zagađenje, u smislu imobilizacije metala u stanje kada oni više neće biti opasnost po okolinu. Svi primenjeni tretmani doveli su dosmanjenja procenta kumulativno izluženih metala iz S/S smeša, ali nijedna smeša tretiranog sedimenta i ispitivanih imobilizacionih agenasa ne pripada grupi inertnog otpada ukoliko se kumulativne izlužene koncentracije metala porede sa koncentracijama koje za otpad propisuje Evropska Unija (2003/33/EC). Ukoliko nam je cilj dobijanje nehazardnog otpada onda moramo primeniti u tretmanu sedimenta kontaminiranog metalima najmanje 30% imobilizaconih agenasa (cementa, kalcijum-oksida). Najveća efikasnost u imobilizaciji metala postignuta je korišćenjem cementa i kalcijum-oksida u smeši (30% cementa i 10% kalcijum-oksida) i primenom termičkog tretmana na višoj temperaturi (11000C) sa glinom (20% gline) što je zaključeno na osnovu koeficijenata difuzije i indeksa izlužljivosti. Dominantan mehanizam izluživanjametala iz ovih smeša je difuzija.This work is concerned with the comparison of the different methods of metal risk assessment in sediments based on examination of the qualityof water courses in Vojvodina. Besides, it deals with the possibility of applying remediation treatments of contaminated sediment and with the efficiency of the different methods, that is the techniques, for immobilization of sediment heavy metals by applying S/S and thermal treatments. A dominant mechanism is proposed for the process of leaching ofthe metals from treated mixtures. Comparison of the results obtained by the different methods of sediment quality assessment showed that in some cases one approach to solving this problem is not sufficient. Metal concentrations in particular sediment samples (the Begej, the DTD Canal, the Nadela, the Sava at Šabac) indicate the presence of contamination, the analyzed samples being of Class 4. According to the Dutch regulations, a sedimentof Class 4 is of unacceptable quality and requires urgent intervention in the sense of sediment dredging, disposal into special depots, and, if possible, remediation. For some samples, despite a high pseudo-total concentration (Class 4), no potential toxicity was confirmed onthe basis of the ratioof the acidic volatile sulfide and simultaneously extracted metals. The results showed that, apart from chemical analyses, biological tests are also necessary, but also sequential extraction analysis, which can more clearly define the way of metal binding to the particular sediment fractions, to allow a more reliable prediction of metal mobility, potential toxicity and bioavailability. In the analysis of sediment quality it is also necessary toinclude the aspect of radioactivity, as it has been shown that the results of this analysis can, not only confirm some of the results of the other analyses, but also indicate the sediment age, origin of contamination and potential toxicity.The subsequent steps should be directed to the control and prevention of contamination, in order to ensure that the water course reviatalization has a lasting positive effect on the environment, an unimpared and safe navigation and application of remediation methods. In the sediment sample (Class 4) that was usedfor the examination of the efficiency of it appeared that zinc, nickel and lead exhibit a high risk, as the percentages of these metals in the exchangeable and carbonate phases were in the range from 40.1 to 45.2%. On the other hand, chromium and cadmium exhibited a moderaterisk, whereas copperin these fractions was present at the levels corresponding to a low risk (5.3%). This is alsoin agreement with the results of pore water analysis and simultaneously extracted metals and acid volatile sulphide examinations. The investigations presented in this work provided an answer to the question whetehr the remediation can successfully remove the contamination in the sense of the immobilization of metals in a state that will not be harmful tothe environment. All the treatments applied yielded a decrease of the percentage of cumulatively leached metals from the S/S mixtures, but none of the mixtures of treated sediments with the tested immobilization agents belongs to the group of inert materials if the cumulative leached concentrations are compared with the concntrations for the wastes given by the EU legislation (2003/33/EC). Ifthe goal is to obtain a non-hazardous material it is necessary to treat the contaminatedsediment with at least 30% of the immobilizing agent (cement or calcium oxide). Based on the diffusion coefficients and leachability index, the highest immobilization efficiency was achieved using a mixture of cement and calcium oxide (30% of cement and 10% of CaO) and by applying thermal treatment at a higher temperature (11000C) with clay (20%). A dominant mechanism of leaching metals from these mixtures is diffusion
The effects of remediation treatments application on the sediment heavy metal immobilization
Predmet izučavanja ove disertacije, osim poređenja različitih metoda procene rizika na osnovu karakterizacije kvaliteta sedimenta vodotokova Vojvodine, bilo je i ispitivanje mogućnosti imobilizacije teških metalau sedimentu primenom različitih remedijacionih tehnika kao i određivanje njihove efikasnosti (npr. solidifikacija/stabilizacija silikatnim materijalima, portland cementom, kalcijum-oksidom itd.) u zavisnosti od brojnih faktora. Osim pseudo-ukupnog sadržaja metala određene su i specifičnije frakcije metala sa posebnim osvrtom na određivanje potencijalno biodostupnih frakcija. Rezultati su ukazali da je naosnovu holandskih preporuka sediment pojedinih vodotokova Vojvodine (Begej, DTD-kanal,Nadela, Sava-Šabac) zagađen metalima (klasa 4) i da je neohodno izmuljivanje i remedijacija. Prema USEPA i kanadskim preporukama, neki uzorci su potencijalno toksični, ali nije zabeležena akutna toksičnost za test vrste u pornoj vodi. Za neke uzorke, i pored visoke pseudo-ukupne koncentracije (klasa 4), nije potvrđena potencijalna toksičnost na osnovu odnosa kiselog volatilnog sulfida i simultano ekstrahovanih metala. Dok se ne primene skuplje metode remedijacije i tretmana sedimenta, najbolje rešenje je izolovano skladištenje na specijalnim deponijama. Naredni koraci bi trebali da budu usresređeni na kontrolu i sprečavanje zagađenja kako bi se obezbedilo da revitalizacija ovih vodotoka ima trajni pozitivan uticaj na životnu sredinu i nesmetanu i bezbednu plovidbu, kao i na primenu određenih remedijacionih metoda. Poređenje rezultata koji su dobijeni različitim procenama kvaliteta sedimenta pokazalo je da ponekad nije dovoljan jedan pristup i da je potrebno je uključiti metode procene biodostupnosti, biotestove i aspekt radioaktivnosti. U uzorku sedimenta koji je korišćen za ispitivanje efikasnosti remedijacionih tretmana, pokazano je da cink, nikal i olovo imaju visok rizik po okolinu, jer seprocenat metala u izmenljivoj i karbonatnoj fazi kretao od 40.1 do 45.2%. Cr i Cd imaju umeren rizik, dok je bakar prisutan u ovim frakcijama u koncentraciji koja predviđa nizak rizik (5.3%). Ovo je u skladu i sa rezultatima analize porne vode i simultano ekstrahovanih metala i kiselog volatilnog sulfida. Istraživanje prikazano u radu je dalo odgovor na pitanje da li remedijacija može uspešno da ukloni zagađenje, u smislu imobilizacije metala u stanje kada oni više neće biti opasnost po okolinu. Svi primenjeni tretmani doveli su dosmanjenja procenta kumulativno izluženih metala iz S/S smeša, ali nijedna smeša tretiranog sedimenta i ispitivanih imobilizacionih agenasa ne pripada grupi inertnog otpada ukoliko se kumulativne izlužene koncentracije metala porede sa koncentracijama koje za otpad propisuje Evropska Unija (2003/33/EC). Ukoliko nam je cilj dobijanje nehazardnog otpada onda moramo primeniti u tretmanu sedimenta kontaminiranog metalima najmanje 30% imobilizaconih agenasa (cementa, kalcijum-oksida). Najveća efikasnost u imobilizaciji metala postignuta je korišćenjem cementa i kalcijum-oksida u smeši (30% cementa i 10% kalcijum-oksida) i primenom termičkog tretmana na višoj temperaturi (11000C) sa glinom (20% gline) što je zaključeno na osnovu koeficijenata difuzije i indeksa izlužljivosti. Dominantan mehanizam izluživanjametala iz ovih smeša je difuzija.This work is concerned with the comparison of the different methods of metal risk assessment in sediments based on examination of the qualityof water courses in Vojvodina. Besides, it deals with the possibility of applying remediation treatments of contaminated sediment and with the efficiency of the different methods, that is the techniques, for immobilization of sediment heavy metals by applying S/S and thermal treatments. A dominant mechanism is proposed for the process of leaching ofthe metals from treated mixtures. Comparison of the results obtained by the different methods of sediment quality assessment showed that in some cases one approach to solving this problem is not sufficient. Metal concentrations in particular sediment samples (the Begej, the DTD Canal, the Nadela, the Sava at Šabac) indicate the presence of contamination, the analyzed samples being of Class 4. According to the Dutch regulations, a sedimentof Class 4 is of unacceptable quality and requires urgent intervention in the sense of sediment dredging, disposal into special depots, and, if possible, remediation. For some samples, despite a high pseudo-total concentration (Class 4), no potential toxicity was confirmed onthe basis of the ratioof the acidic volatile sulfide and simultaneously extracted metals. The results showed that, apart from chemical analyses, biological tests are also necessary, but also sequential extraction analysis, which can more clearly define the way of metal binding to the particular sediment fractions, to allow a more reliable prediction of metal mobility, potential toxicity and bioavailability. In the analysis of sediment quality it is also necessary toinclude the aspect of radioactivity, as it has been shown that the results of this analysis can, not only confirm some of the results of the other analyses, but also indicate the sediment age, origin of contamination and potential toxicity.The subsequent steps should be directed to the control and prevention of contamination, in order to ensure that the water course reviatalization has a lasting positive effect on the environment, an unimpared and safe navigation and application of remediation methods. In the sediment sample (Class 4) that was usedfor the examination of the efficiency of it appeared that zinc, nickel and lead exhibit a high risk, as the percentages of these metals in the exchangeable and carbonate phases were in the range from 40.1 to 45.2%. On the other hand, chromium and cadmium exhibited a moderaterisk, whereas copperin these fractions was present at the levels corresponding to a low risk (5.3%). This is alsoin agreement with the results of pore water analysis and simultaneously extracted metals and acid volatile sulphide examinations. The investigations presented in this work provided an answer to the question whetehr the remediation can successfully remove the contamination in the sense of the immobilization of metals in a state that will not be harmful tothe environment. All the treatments applied yielded a decrease of the percentage of cumulatively leached metals from the S/S mixtures, but none of the mixtures of treated sediments with the tested immobilization agents belongs to the group of inert materials if the cumulative leached concentrations are compared with the concntrations for the wastes given by the EU legislation (2003/33/EC). Ifthe goal is to obtain a non-hazardous material it is necessary to treat the contaminatedsediment with at least 30% of the immobilizing agent (cement or calcium oxide). Based on the diffusion coefficients and leachability index, the highest immobilization efficiency was achieved using a mixture of cement and calcium oxide (30% of cement and 10% of CaO) and by applying thermal treatment at a higher temperature (11000C) with clay (20%). A dominant mechanism of leaching metals from these mixtures is diffusion
Adsorption kinetics and mechanism analysis of cyan printing dye on polyethylene microplastics
Printing on polymer materials might result with generation of coloured wastewater, enriched with a certain amount of microplastics in a form of polyethylene or polypropylene. In that way, microplastics may acquire the function of carriers of synthetic dyes, heavy metals and other polluting substances. In this paper, kinetics and adsorption mechanism of printing Cyan dye on polyethylene (powdered and granulated), as one of the most common types of microplastics, were investigated. The experiments were performed in a batch mode, in laboratory conditions. Based on the obtained results, a similar adsorption rate degree of selected printing dye was determined on granulated (adsorbed amount was 48.04 µg/g) and powdered material (adsorbed amount was 44.32 µg/g). The adsorption data were fitted well by pseudo-second-order kinetics, while isotherm studies were evaluated using two models: Langmuir and Freundlich. Freundlich and Langmuir equations showed similar performances to fit the solid/liquid distribution of Cyan dye on powdered polyethylene (R2 = 0.987), whereas Langmuir equation showed slightly better performances for granulated polyethylene than Freundlich equation
Modelling and Prediction of Surface Roughness in CNC Turning Process using Neural Networks
The paper presents an approach to solving the problem of modelling and prediction of surface roughness in CNC turning process. In order to solve this problem an experiment was designed. Samples for experimental part of investigation were of dimensions 30 × 350 mm, and the sample material was GJS 500 - 7. Six cutting inserts were used for the designed experiment as well as variations of cutting speed, feed and depth of cut on CNC lathe DMG Moriseiki-CTX 310 Ecoline. After the conducted experiment, surface roughness of each sample was measured and a data set of 750 instances was formed. For data analysis, the Back-Propagation Neural Network (BPNN) algorithm was used. In modelling different BPNN architectures with characteristic features the results of RMS (Root Mean Square) error were controlled. Specially analysed were the RMS errors realised by different number of neurons in hidden layers. For the BPNN architecture with one hidden layer the architecture (4 – 8 - 1) was adopted with RMS error of 3,37%. In modelling the BPNN architecture with two hidden layers, a considerable amount of architectures was investigated. The adopted architecture with two hidden layers (4 - 2 - 10 - 1) generated the RMS error of 2,26%. The investigation was also directed at the size of the data set and controlling the level of RMS error
Correlation between the Results of Sequential Extraction and Effectiveness of Immobilization Treatment of Lead- and Cadmium-Contaminated Sediment
The assessment of the quality of sediment from the Great Backi Canal (Serbia), based on the pseudo-total lead (Pb) and cadmium (Cd) content according to the corresponding Dutch standards and Canadian guidelines, showed its severe contamination with these two metals. A microwave-assisted BCR (Community Bureau of Reference of the Commission of the European Union) sequential extraction procedure was employed to assess their potential mobility and risk to the aquatic environment. Comparison of the results of sequential extraction and different criteria for sediment quality assessment has led to somewhat contradictory conclusions. Namely, while the results of sequential extraction showed that Cd comes under the high-risk category, Pb shows low risk to the environment, despite its high pseudo-total content. The contaminated sediment, irrespective of the different speciation of Pb and Cd, was subjected to the same immobilization, stabilization/solidification (S/S) treatments using kaolinite, montmorillonite, kaolinite-quicklime, montmorillonite-quicklime, fly ash, zeolite, or zeolite-fly ash combination. Semi-dynamic leaching tests were conducted for Pb- and Cd-contaminated sediment in order to assess the long-term leaching behavior of these metals. In order to simulate “worst case” leaching conditions, the semi-dynamic leaching test was modified using 0.014 M acetic acid (pH = 3.25) and humic acid solutions (20 mg TOC l-1) as leachants instead of deionized water. The effectiveness of S/S treatment was evaluated by determining diffusion coefficients (De) and leachability indices (LX). The standard toxicity characteristic leaching procedure (TCLP) was applied to evaluate the extraction potential of Pb and Cd. A diffusion-based model was used to elucidate the controlling leaching mechanisms. Generally, the test results indicated that all applied S/S treatments were effective in immobilizing Pb and Cd, and the treated sediments may be considered acceptable for “controlled utilization” based on LX values, irrespective of their different availability in the untreated samples. In the majority of samples, the controlling leaching mechanism appeared to be diffusion, which indicates that a slow leaching of Cd and Pb could be expected when the above S/S agents were applied. The TCLP results showed that all S/S samples were nonhazardous
Potential impact of engineered nanomaterials release into environment
Engineered nanomaterials (ENMs) are defined as a materials with at least one dimension between 1 nm to 100 nm. They have large surface area and specific electronic, optoelectronic, thermal and catalytic properties in comparison to their bulk counterparts, which make them particularly useful. ENMs that are found in different products (paints, cosmetics, medicines, food, sun tan lotions, remediation treatments, etc.) are usually designed to achieve desired properties. Those materials can be released into the environment throughout their entire life cycle and their extensive usage nowdays could led to their accumulation into environment. Over the last twenty years, ENMs have significantly increased in quantity produced, thus their presence in environment could have significant impact. However, understanding the effects that engineered nanomaterials (ENMs) have on environment through these applications is still limited. The aim of this paper is to point out issues releated to release of ENMs into the environment
The immobilization of copper from waste printing developer sludge
The electrocoagulation (EC) treatment of the waste printing developer in laboratory conditions was produced the sludge with a high amount of copper. The solidification/stabilization (S/S) treatment of electrocoagulation sludge (ECS) has been conducted with four immobilization agents: Portland cement, calx, bentonite, and local clay. The efficiency of the S/S treatment was monitored by applying standard German (DIN 38414-4) leaching test. The characterization of ECS in terms of its toxicity was evaluated by comparing the copper concentration levels in the leaching solution with maximum allowed concentrations according to current regulations
The combined electrocoagulation/flotation and adsorption processes for organic substances regeneration of waste printing developer
This paper investigates the possibility of reducing the content of organic substances in waste printing developer using a combination of electrocoagulation/flotation (ECF) and adsorption (AD) processes. The content of organic substances in waste printing developer was monitored by analysis of total organic carbon (TOC), chemical oxygen demand (COD) and biological oxygen demand (BOD5) before and after the ECF and AD processes, respectively. When combining the two processes, a removal of 99.4, 92.9 and 96.0% of the TOC, COD and BOD5 was achieved, respectively. Obtained results confirm the improvement in the printing industrial effluent quality and height removal of organic substances by the combined ECF and AD treatments
The influence of electrode combinations on the kinetics removal of organic substances from the printing effluent
In this research, the electrocoagulation/flotation (ECF) reaction kinetics of organic substances removal from the waste fountain solution was investigated. The ECF reaction kinetics of the organic substances removal from the printing effluent can be described by a pseudo-second rate equation. Obtained results have shown that the trend of decrease in pseudo-second order constant for organic substances removal follows the trend of decrease in the efficiency of electrode combinations (Fe(-)/Al(+) > Al(-)/Fe(+) > Al(-)/Al(+) > Fe(-)/Fe(+)) and current density (8 > 4 > 2 mA cm-2 ) of the ECF treatment
Sorption-desorption behaviour of hydrophobic organic compounds on Danube sediment
The sorption-desorption hysteresis of naphthalene and phenanthrene onto Danube sediment was investigated. Hysteresis indices (HI) are calculated for three equilibrium concentration (Ce=1%, 5% i 50% of the solubility in water). The results of sorption-desorption hysteresis indicated that it exists for both investigated sorbates on the Danube sediment. For more hydrophobic compound, phenanthrene (logKOW< 4.55) hysteresis is less pronounced in comparison with naphthalene (logKOW< 3.36). In the case of naphthalene, the existence of hysteresis may be due to irreversible pore deformation of the sorbent which causes the formation of meta-stable states in the sorbate mesopores