983 research outputs found
Geometric phase accumulation-based effects in the quantum dynamics of an anisotropically trapped ion
New physical effects in the dynamics of an ion confined in an anisotropic
two-dimensional Paul trap are reported. The link between the occurrence of such
manifestations and the accumulation of geometric phase stemming from the
intrinsic or controlled lack of symmetry in the trap is brought to light. The
possibility of observing in laboratory these anisotropy-based phenomena is
briefly discussed.Comment: 10 pages. Acta Physica Hungarica B 200
Oscillations of the purity in the repeated-measurement-based generation of quantum states
Repeated observations of a quantum system interacting with another one can
drive the latter toward a particular quantum state, irrespectively of its
initial condition, because of an {\em effective non-unitary evolution}. If the
target state is a pure one, the degree of purity of the system approaches
unity, even when the initial condition of the system is a mixed state. In this
paper we study the behavior of the purity from the initial value to the final
one, that is unity. Depending on the parameters, after a finite number of
measurements, the purity exhibits oscillations, that brings about a lower
purity than that of the initial state, which is a point to be taken care of in
concrete applications.Comment: 5 pages, 3 figure
Zeno Dynamics and High-Temperature Master Equations Beyond Secular Approximation
Complete positivity of a class of maps generated by master equations derived
beyond the secular approximation is discussed. The connection between such
class of evolutions and physical properties of the system is analyzed in depth.
It is also shown that under suitable hypotheses a Zeno dynamics can be induced
because of the high temperature of the bath.Comment: 9 pages, 2 figure
Microscopic description of dissipative dynamics of a level crossing transition
We analyze the effect of a dissipative bosonic environment on the
Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a
microscopic approach to derive the relevant master equation. For an environment
at zero temperature and weak dissipation our microscopic approach confirms the
independence of the survival probability on the decay rate that has been
predicted earlier by the simple phenomenological LZSM model. For strong decay
the microscopic approach predicts a notable increase of the survival
probability, which signals dynamical decoupling of the initial state. Unlike
the phenomenological model our approach makes it possible to study the
dependence of the system dynamics on the temperature of the environment. In the
limit of very high temperature we find that the dynamics is characterized by a
very strong dynamical decoupling of the initial state - temperature-induced
quantum Zeno effect.Comment: 6 pages, 4 figure
Smart technologies: useful tools to assess the exposure to solar ultraviolet radiation for general population and outdoor workers
Beside some documented benefits attributed to ultraviolet solar radiation (solar UVR), a lot of adverse effects are a consequence of a chronic exposure, including the occurrence of photo-induced skin cancer. Improvement in risks perception, due to UVR overexposure, in the case of occupational or recreational exposure, is of great importance for public health. The amount of exposure to UVR has to be assessed as accurately as possible, with the aim to characterize different exposure conditions and, by their appropriate management, to prevent adverse health effects attributed to prolonged exposure to solar radiation (SR). The available technology allows to acquire such information, either using miniaturized and wearable sensors, or through devices who exploit radiative transfer models by integrating satellite-based radiometric data with meteorological data. We proceeded to an intercomparison to evaluate the performance of different devices in three commonly exposure conditions. Applications using satellite data, developed for preventing sunburn during recreational exposure, are adeguate for that purpose, while for a more accurate exposure assessment, only those which evaluate the irradiance in near real-time provide acceptable results. Unlike earlier, the low-cost devices that use wearable sensors showed inadequate performance for our purpose
Quantum Zeno Subspaces induced by Temperature
We discuss the partitioning of the Hilbert space of a quantum system induced
by the interaction with another system at thermal equilibrium, showing that the
higher the temperature the more effective is the formation of Zeno subspaces.
We show that our analysis keeps its validity even in the case of interaction
with a bosonic reservoir, provided appropriate limitations of the relevant
bandwidth.Comment: 9 pages, 3 figure
Propagation of Artemisia arborescens L. by stem-cutting: adventitious root formation under different conditions
Artemisia arborescens L. has gained a strong importance worldwide due to its many industrial uses and it has been recently considered as ornamental plant. A major constraint to its widespread cultivation is represented, by far, by the scarce availability of high-quality plant material for field establishment; hence, development of a fast and effective methods for its vegetative propagation is needed. An experiment was conducted to assess the effects of different harvest periods, NAA, and rooting substrates on rooting of stem cuttings of A. arborescens.
Semi hardwood cuttings were collected from wild plants in February, April, and November. Half of the material was treated with 0.4% NAA and placed on different mixtures of sphagnum peat and perlite (2 : 1, 1 : 1, and 1 : 2 v/v) under mist. After 40 days the percentage of rooted cuttings was significantly influenced by the harvest period as cuttings collected in February showed the highest rooting rate, and numerous alive but not rooted cuttings evidenced callus formation. In contrast, the use of different rooting substrates as well as NAA addition did not show any significant effect on rooting capacity. The best results, in terms of root number (4.2) and root length (8.8 cm), were achieved on cuttings grown in a 1 : 1 v/v sphagnum peat : perlite mixture, without NAA application
Effect of current corrugations on the stability of the tearing mode
The generation of zonal magnetic fields in laboratory fusion plasmas is
predicted by theoretical and numerical models and was recently observed
experimentally. It is shown that the modification of the current density
gradient associated with such corrugations can significantly affect the
stability of the tearing mode. A simple scaling law is derived that predicts
the impact of small stationary current corrugations on the stability parameter
. The described destabilization mechanism can provide an explanation
for the trigger of the Neoclassical Tearing Mode (NTM) in plasmas without
significant MHD activity.Comment: Accepted to Physics of Plasma
Stimulated Raman adiabatic passage in an open quantum system: Master equation approach
A master equation approach to the study of environmental effects in the
adiabatic population transfer in three-state systems is presented. A systematic
comparison with the non-Hermitian Hamiltonian approach [N. V. Vitanov and S.
Stenholm, Phys. Rev. A {\bf 56}, 1463 (1997)] shows that in the weak coupling
limit the two treatments lead to essentially the same results. Instead, in the
strong damping limit the predictions are quite different: in particular the
counterintuitive sequences in the STIRAP scheme turn out to be much more
efficient than expected before. This point is explained in terms of quantum
Zeno dynamics.Comment: 11 pages, 4 figure
Population trapping due to cavity losses
In population trapping the occupation of a decaying quantum level keeps a
constant non-zero value. We show that an atom-cavity system interacting with an
environment characterized by a non-flat spectrum, in the non-Markovian limit,
exhibits such a behavior, effectively realizing the preservation of
nonclassical states against dissipation. Our results allow to understand the
role of cavity losses in hybrid solid state systems and pave the way to the
proper description of leakage in the recently developed cavity quantum
electrodynamic systems.Comment: 4 pages, 3 figures, version accepted for publication on Phys. Rev.
- …