241 research outputs found
The role of blood clot in guided bone regeneration: Biological considerations and clinical applications with titanium foil
In Guided Bone Regeneration (GBR) materials and techniques are essential to achieve the expected results. Thanks to their properties, blood clots induce bone healing, maturation, differenti-ation and organization. The preferred material to protect the clot in Guided Bone Regeneration is the titanium foil, as it can be shaped according to the bone defect. Furthermore, its exposition in the oral cavity does not impair the procedure. We report on five clinical cases in order to explain the management of blood clots in combination with titanium foil barriers in different clinical settings. Besides being the best choice to protect the clot, the titanium foil represents an excellent barrier that is useful in GBR due to its biocompatibility, handling, and mechanical strength properties. The clot alone is the best natural scaffold to obtain the ideal bone quality and avoid the persistence of not-resorbed granules of filler materials in the newly regenerated bone. Even though clot contraction still needs to be improved, as it impacts the volume of the regenerated bone, future studies in GBR should be inspired by the clot and its fundamental properties
Dixon-Souriau equations from a 5-dimensional spinning particle in a Kaluza-Klein framework
The dimensional reduction of Papapetrou equations is performed in a
5-dimensional Kaluza-Klein background and Dixon-Souriau results for the motion
of a charged spinning body are obtained. The splitting provides an electric
dipole moment, and, for elementary particles, the induced parity and
time-reversal violations are explained.Comment: 20 pages, to appear on Physics Letters
Immediate vs non-immediate loading post-extractive implants: A comparative study of Implant Stability Quotient (ISQ)
Purpose. This study aims to evaluate differences in implant stability between post-extractive implants vs immediately placed post-extractive implants by resonance frequency analysis (RFA). Materials and methods. Patients were grouped into two different categories. In Group A 10 patients had an immediate postextractive implant, then a provisional, acrylic resin crown was placed (immediate loading). In Group B (control group) 10 patients only had an immediate post-extractive implant. Both upper and lower premolars were chosen as post-extractive sites. Implant Stability Quotient (ISQ) was measured thanks to RFA measurements (Osstell®). Five intervals were considered: immediately after surgery (T0) and every four weeks, until five months after implant placement (T1, T2, T3, T4,T5). A statistical analysis by means of Student’s T-test (significance set at p<0.05) for independent sample was carried out in order to compare Groups A and B. Results. The ISQ value between the two groups showed a statistically significant difference (p<0.02) at T1. No statistically significant difference in ISQ was assessed at T0, T2, T3, T4 and T5. Conclusions. After clinical assessment it is possible to confirm that provisional and immediate prosthetic surgery in postextraction sites with cone-shaped implants, platform-switching abutment and bioactive surface can facilitate osseointegration, reducing healing time
Heritage Science Contribution to the Understanding of Meaningful Khipu Colours
This work is the first scientific study of khipu dyes and inorganic mordants and auxiliaries, paving the way for a new approach to understanding khipus’ meaningful materiality, technology, and colours. Khipus have usually been described as “Andean knotted records”, but they are much more than complex knotted cords: a great part of the information encoded resides in khipus’ incredible colours. The objects of this study are two Wari khipus, 1932.08.0001 and 1932.08.0002, now at the Museum of World Culture in Gothenburg, Sweden. After a morphological study of the khipus, the objects were imaged with multiband imaging (MBI) as an aid for the sampling decisional process. The khipus were then analysed non-invasively by X-ray fluorescence (XRF) spectroscopy on selected areas of particular interest. The khipus were consequently sampled for elemental characterisation by micro-XRF, and liquid chromatography coupled with high-resolution mass spectrometry (HPLC–HRMS) for characterising the organic dye composition. This paper presents a part of the results of the project “Meaningful materials in the khipu code”, with the intent to shed light on the difficulties and possibilities of investigating khipu colours and dyestuffs. MBI and XRF revealed unforeseeable structural characteristics, such as remnants from a heavily degraded thread in an area of missing thread wrapping and a dual-coloured thread that was previously deemed single-coloured. The organic dyes identified by HPLC–HRMS comprised indigoids, cochineal, and an unknown flavonoid-based dyestuff. XRF of the inorganic components revealed associations of several elements with specific colours
Setting up of an experimental site for the continuous monitoring of water discharge, suspended sediment transport and groundwater levels in a mediterranean basin. Results of one year of activity
The study of suspended sediment transport requires continuous measurement of water discharge to better understand the sediment dynamics. Furthermore, a groundwater monitoring network can support the stream discharge measures, as it reveals how the interactions between surface water and groundwater may affect runoff and consequently sediment transport during flood events. An experimental site for the continuous monitoring of water discharge, suspended sediment transport and groundwater levels was set up in the Carapellotto basin (27.17 km2), which is located in Apulia, Southern Italy. Seven flood events that occurred in the operation timespan were covered with a full record of both water discharge and sediment concentration. Some monitoring problems, largely due to the clogging of the float by mud, suggested to improve the experimental set up. The results show high values of suspended sediments concentration which indicate the sub-basin’s key role in the sediment delivery to the whole river system, while counter-clockwise hysteresis loops are the most frequent due to the basin characteristics. The effects of the interaction between surface water and groundwater are related not only to the flood magnitude but also to the hydrogeological features in the hyporheic zone
Extension of Wavenumber Domain Focusing for spotlight COSMO-SkyMed SAR Data
In this work we describe a method to handle curved orbits in wavenumber domain focusing algorithm for high-resolution SAR data acquired by Low Earth Orbit satellites using spotlight mode. The stand..
Combining remote sensing techniques and field surveys for post‑earthquake reconnaissance missions
Remote reconnaissance missions are promising solutions for the assessment of earthquake induced structural damage and cascading geological hazards. Space-borne remote sensing can complement in-field missions when safety and accessibility concerns limit post-earthquake operations on the ground. However, the implementation of remote sensing techniques in post-disaster missions is limited by the lack of methods that combine different techniques and integrate them with field survey data. This paper presents a new approach for rapid post-earthquake building damage assessment and landslide mapping, based on Synthetic Aperture Radar (SAR) data. The proposed texture-based building damage classification approach exploits very high resolution post-earthquake SAR data integrated with building survey data. For landslide mapping, a backscatter intensity-based landslide detection approach, which also includes the separation between landslides and flooded areas, is combined with optical-based manual inventories. The approach was implemented during the joint Structural Extreme Event Reconnaissance, GeoHazards International and Earthquake Engineering Field Investigation Team mission that followed the 2021 Haiti Earthquake and Tropical Cyclone Grace
Low energy high angular resolution neutral atom detection by means of micro-shuttering techniques: the BepiColombo SERENA/ELENA sensor
The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA
cornerstone BepiColombo mission to Mercury (in the SERENA instrument package)
is a new kind of low energetic neutral atoms instrument, mostly devoted to
sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV,
within 1-D (2x76 deg). ELENA is a Time-of-Flight (TOF) system, based on
oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical
gratings: the incoming neutral particles directly impinge upon the entrance
with a definite timing (START) and arrive to a STOP detector after a flight
path. After a brief dissertation on the achievable scientific objectives, this
paper describes the instrument, with the new design techniques approached for
the neutral particles identification and the nano-techniques used for designing
and manufacturing the nano-structure shuttering core of the ELENA sensor. The
expected count-rates, based on the Hermean environment features, are shortly
presented and discussed. Such design technologies could be fruitfully exported
to different applications for planetary exploration.Comment: 11 page
- …