3 research outputs found

    Facial and genital color ornamentation, testosterone, and reproductive output in high-ranking male rhesus macaques

    No full text
    Males in many vertebrate species have colorful ornaments that evolved by sexual selection. The role of androgens in the genesis and maintenance of these signals is unclear. We studied 21 adult high-ranking male rhesus macaques from nine social groups in the free-ranging population on Cayo Santiago, Puerto Rico, and analyzed facial and genital skin luminance and redness, fecal androgens, rates of mating behaviors, and offspring sired. Facial and genital coloration varied in relation to age, mating behavior, reproductive success, and testosterone concentration. Our results indicate that skin coloration in high-ranking male rhesus macaques is a sexually-selected trait mediated by androgens. These results add to the growing literature on the proximate and ultimate causes of male sexual signals and highlight the need to examine how these characteristics change with age in other species

    Methods for detecting Zika virus in feces: A case study in captive squirrel monkeys (Saimiri boliviensis boliviensis).

    No full text
    A strain of Zika virus (ZIKV) of Asian origin associated with birth defects and neurological disorders has emerged and spread through the Americas. ZIKV was first isolated in the blood of nonhuman primates in Africa and has been detected in the blood, saliva, and urine of a few catarrhine species in both Africa and Asia, suggesting that nonhuman primates may serve as both a source and a reservoir of the virus. The recent introduction of ZIKV to human populations in the Americas presents the potential for the virus to spread into nonhuman primate reservoirs. Thus, it is critical to develop efficient and noninvasive detection methods to monitor the spread of the virus in wild nonhuman primate populations. Here, we describe a method for ZIKV detection in noninvasively collected fecal samples of a Neotropical primate. Fecal samples were collected from two captive squirrel monkeys (Saimiri boliviensis boliviensis) that were experimentally infected with ZIKV (Strain Mexico_1_44) and an additional two uninfected squirrel monkeys. Nucleic acids were extracted from these samples, and RT-qPCR was used to assay for the presence of ZIKV using primers flanking a 101 bp region of the NS5 gene. In both ZIKV-inoculated animals, ZIKV was detected 5-11 days post-infection, but was not detected in the uninfected animals. We compare the fecal results to ZIKV detection in serum, saliva, and urine samples from the same individuals. Our results indicate that fecal detection is a cost-effective, noninvasive method for monitoring wild populations of Neotropical primates as possible ZIKV reservoirs
    corecore