10 research outputs found

    Experimental Zika virus infection of Jamaican fruit bats (Artibeus jamaicensis) and possible entry of virus into brain via activated microglial cells.

    No full text
    The emergence of Zika virus (ZIKV) in the New World has led to more than 200,000 human infections. Perinatal infection can cause severe neurological complications, including fetal and neonatal microcephaly, and in adults there is an association with Guillain-Barré syndrome (GBS). ZIKV is transmitted to humans by Aedes sp. mosquitoes, yet little is known about its enzootic cycle in which transmission is thought to occur between arboreal Aedes sp. mosquitos and non-human primates. In the 1950s and '60s, several bat species were shown to be naturally and experimentally susceptible to ZIKV with acute viremia and seroconversion, and some developed neurological disease with viral antigen detected in the brain. Because of ZIKV emergence in the Americas, we sought to determine susceptibility of Jamaican fruit bats (Artibeus jamaicensis), one of the most common bats in the New World. Bats were inoculated with ZIKV PRVABC59 but did not show signs of disease. Bats held to 28 days post-inoculation (PI) had detectable antibody by ELISA and viral RNA was detected by qRT-PCR in the brain, saliva and urine in some of the bats. Immunoreactivity using polyclonal anti-ZIKV antibody was detected in testes, brain, lung and salivary glands plus scrotal skin. Tropism for mononuclear cells, including macrophages/microglia and fibroblasts, was seen in the aforementioned organs in addition to testicular Leydig cells. The virus likely localized to the brain via infection of Iba1+ macrophage/microglial cells. Jamaican fruit bats, therefore, may be a useful animal model for the study of ZIKV infection. This work also raises the possibility that bats may have a role in Zika virus ecology in endemic regions, and that ZIKV may pose a wildlife disease threat to bat populations

    Regulatory T cell-like response to SARS-CoV-2 in Jamaican fruit bats (Artibeus jamaicensis) transduced with human ACE2.

    No full text
    Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-β, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease

    SARS-CoV-2 infection, neuropathogenesis and transmission among deer mice: Implications for spillback to New World rodents.

    No full text
    Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNβ, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8β expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America

    The Role of the Cytoskeleton During Viral Infection

    No full text
    corecore