127 research outputs found

    How Can Allergen Immunotherapy Protect against COVID-19?

    Get PDF

    Individual measurement of gene expression in blood cells from Rainbow trout Oncorhynchus mykiss (Walbaum)

    Get PDF
    ACKNOWLEDGEMENTS This work was funded by the National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs) [grant G1100675].Peer reviewedPublisher PD

    Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients

    Get PDF
    Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non‐communicable diseases—where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease

    Machine Learning Successfully Detects Patients with COVID-19 Prior to PCR Results and Predicts Their Survival Based on Standard Laboratory Parameters in an Observational Study

    Full text link
    Introduction: In the current COVID-19 pandemic, clinicians require a manageable set of decisive parameters that can be used to (i) rapidly identify SARS-CoV-2 positive patients, (ii) identify patients with a high risk of a fatal outcome on hospital admission, and (iii) recognize longitudinal warning signs of a possible fatal outcome. Methods: This comparative study was performed in 515 patients in the Maria Skłodowska-Curie Specialty Voivodeship Hospital in Zgierz, Poland. The study groups comprised 314 patients with COVID-like symptoms who tested negative and 201 patients who tested positive for SARS-CoV-2 infection; of the latter, 72 patients with COVID-19 died and 129 were released from hospital. Data on which we trained several machine learning (ML) models included clinical findings on admission and during hospitalization, symptoms, epidemiological risk, and reported comorbidities and medications. Results: We identified a set of eight on-admission parameters: white blood cells, antibody-synthesizing lymphocytes, ratios of basophils/lymphocytes, platelets/neutrophils, and monocytes/lymphocytes, procalcitonin, creatinine, and C-reactive protein. The medical decision tree built using these parameters differentiated between SARS-CoV-2 positive and negative patients with up to 90–100% accuracy. Patients with COVID-19 who on hospital admission were older, had higher procalcitonin, C-reactive protein, and troponin I levels together with lower hemoglobin and platelets/neutrophils ratio were found to be at highest risk of death from COVID-19. Furthermore, we identified longitudinal patterns in C-reactive protein, white blood cells, and D dimer that predicted the disease outcome. Conclusions: Our study provides sets of easily obtainable parameters that allow one to assess the status of a patient with SARS-CoV-2 infection, and the risk of a fatal disease outcome on hospital admission and during the course of the disease

    Variable expression of cysteinyl leukotriene type I receptor splice variants in asthmatic females with different promoter haplotypes

    Get PDF
    BACKGROUND: Cysteinyl leukotrienes are potent inflammatory mediators implicated in the pathogenesis of asthma. Human cysteinyl leukotriene receptor 1 (CYSLTR1) gene contains five exons that are variably spliced. Within its promoter few polymorphisms were described. To date, there has been no evidence about the expression of different splice variants of CysLT(1 )in asthma and their association with CYSLTR1 promoter polymorphisms. The goal of our study was to investigate CysLT(1 )alternative transcripts expression in asthmatic patients with different CYSLTR1 promoter haplotypes. The study groups consisted of 44 patients with asthma, diagnosed according to GINA 2008 criteria and 18 healthy subjects. Genomic DNA and total RNA was extracted from peripheral blood mononuclear cells. Real-time PCR was performed with specific primers for transcript I [GenBank:DQ131799] and II [GenBank:DQ131800]. Fragments of the CYSLTR1 promoter were amplified by PCR and sequenced directly to identify four single nucleotide polymorphisms: C/T [SNP:rs321029], A/C [SNP:rs2637204], A/G [SNP:rs2806489] and C/T [SNP:rs7066737]. RESULTS: The expression of CysLT(1 )transcript I and II in asthma did not differ from its expression in healthy control group. However, in major alleles homozygotic CAAC/CAAC women with asthma we found significantly higher expression of transcript I as compared to heterozygous CAAC/TCGC women in that loci. CysLT(1 )transcript I expression tended to negative correlation with episodes of acute respiratory infection in our asthmatic population. Moreover, expression of CysLT(1 )transcript II in CAAC/CAAC homozygotic women with asthma was significantly lower than in CAAC/CAAC healthy control females. CONCLUSIONS: Genetic variants of CYSLTR1 promoter might be associated with gender specific expression of CysLT(1 )alternative transcripts in patients with asthma. CysLT(1 )splice variants expression might also correlate with the susceptibility to infection in asthmatic population

    Alpine altitude climate treatment for severe and uncontrolled asthma: An EAACI position paper

    Full text link
    Currently available European Alpine Altitude Climate Treatment (AACT) programs combine the physical characteristics of altitude with the avoidance of environmental triggers in the alpine climate and a personalized multidisciplinary pulmonary rehabilitation approach. The reduced barometric pressure, oxygen pressure, and air density, the relatively low temperature and humidity, and the increased UV radiation at moderate altitude induce several physiological and immunological adaptation responses. The environmental characteristics of the alpine climate include reduced aeroallergens such as house dust mites (HDM), pollen, fungi, and less air pollution. These combined factors seem to have immunomodulatory effects controlling pathogenic inflammatory responses and favoring less neuro-immune stress in patients with different asthma phenotypes. The extensive multidisciplinary treatment program may further contribute to the observed clinical improvement by AACT in asthma control and quality of life, fewer exacerbations and hospitalizations, reduced need for oral corticosteroids (OCS), improved lung function, decreased airway hyperresponsiveness (AHR), improved exercise tolerance, and improved sinonasal outcomes. Based on observational studies and expert opinion, AACT represents a valuable therapy for those patients irrespective of their asthma phenotype, who cannot achieve optimal control of their complex condition despite all the advances in medical science and treatment according to guidelines, and therefore run the risk of falling into a downward spiral of loss of physical and mental health. In the light of the observed rapid decrease in inflammation and immunomodulatory effects, AACT can be considered as a natural treatment that targets biological pathways. Keywords: altitude; asthma; climate; environment; pulmonary rehabilitation

    Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19

    Full text link
    Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti-inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research

    Leukocyte redistribution as immunological biomarker of corticosteroid resistance in severe asthma

    Full text link
    Background: Earlier studies have suggested that the leukocyte redistribution can be considered as an immunological marker of the clinical response to corticosteroids (CS), representing an easy measurable potential biomarker in severe asthma. Objective: The aim of this study was to determinate the utility of the leukocyte redistribution as a biomarker of disease heterogeneity in patients with severe asthma and as a bioindicator of potential CS resistance. Methods: We developed an unbiased clustering approach based on the clinical data and the flow cytometry results of peripheral blood leukocyte phenotypes of 142 patients with severe asthma before and after systemic CS administration. Results: Based on the differences in the blood count eosinophils, neutrophils and lymphocytes, together with the flow cytometry measurements of basic T cell, B cell and NK cell subpopulations before and after systemic CS administration, we identified two severe asthma clusters, which differed in the cell frequencies, response to CS and atopy status. Patients in cluster 1 had higher frequency of blood eosinophils at baseline, were sensitized to less allergens and had better steroid responsiveness, measured as the pronounced leukocyte redistribution after the administration of systemic CS. Patients in cluster 2 were determined by the higher frequency of B-cells and stronger IgE sensitization status to the multiple allergens. They also displayed higher steroid resistance, as the clinical correlate for the lower leukocyte redistribution after administration of systemic CS. Conclusion: The flow cytometry-based profiling of the basic populations of immune cells in the blood and its analysis before and after systemic corticosteroid administration could improve personalized treatment approaches in patients with severe asthma. Keywords: asthma phenotypes; biological therapy; corticosteroids resistance; leukocyte redistribution; severe asthma; treatment asthm

    Gut epithelial barrier damage caused by dishwasher detergents and rinse aids

    Full text link
    Background: The increased prevalence of many chronic inflammatory diseases linked to gut epithelial barrier leakiness has prompted us to investigate the role of extensive use of dishwasher detergents, among other factors. Objective: We sought to investigate the effects of professional and household dishwashers, and rinse agents, on cytotoxicity, barrier function, transcriptome, and protein expression in gastrointestinal epithelial cells. Methods: Enterocytic liquid-liquid interfaces were established on permeable supports, and direct cellular cytotoxicity, transepithelial electrical resistance, paracellular flux, immunofluorescence staining, RNA-sequencing transcriptome, and targeted proteomics were performed. Results: The observed detergent toxicity was attributed to exposure to rinse aid in a dose-dependent manner up to 1:20,000 v/v dilution. A disrupted epithelial barrier, particularly by rinse aid, was observed in liquid-liquid interface cultures, organoids, and gut-on-a-chip, demonstrating decreased transepithelial electrical resistance, increased paracellular flux, and irregular and heterogeneous tight junction immunostaining. When individual components of the rinse aid were investigated separately, alcohol ethoxylates elicited a strong toxic and barrier-damaging effect. RNA-sequencing transcriptome and proteomics data revealed upregulation in cell death, signaling and communication, development, metabolism, proliferation, and immune and inflammatory responses of epithelial cells. Interestingly, detergent residue from professional dishwashers demonstrated the remnant of a significant amount of cytotoxic and epithelial barrier-damaging rinse aid remaining on washed and ready-to-use dishware. Conclusions: The expression of genes involved in cell survival, epithelial barrier, cytokine signaling, and metabolism was altered by rinse aid in concentrations used in professional dishwashers. The alcohol ethoxylates present in the rinse aid were identified as the culprit component causing the epithelial inflammation and barrier damage. Keywords: Alcohol ethoxylates; Caco-2; cytotoxicity; dishwasher detergents; epithelial barrier; inflammation; rinse aid

    The short-term and long-term effects of intranasal mesenchymal stem cell administration to noninflamed mice lung

    Full text link
    Mesenchymal stem cells (mesenchymal stromal cells; MSC)-based therapies remain a promising approach to treat degenerative and inflammatory diseases. Their beneficial effects were confirmed in numerous experimental models and clinical trials. However, safety issues concerning MSCs’ stability and their long-term effects limit their implementation in clinical practice, including treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease, and COVID-19. Here, we aimed to investigate the safety of intranasal application of human adipose tissue-derived MSCs in a preclinical experimental mice model and elucidate their effects on the lungs. We assessed short-term (two days) and long-term (nine days) effects of MSCs administration on lung morphology, immune responses, epithelial barrier function, and transcriptomic profiles. We observed an increased frequency of IFNγ- producing T cells and a decrease in occludin and claudin 3 as a long-term effect of MSCs administration. We also found changes in the lung transcriptomic profiles, reflecting redox imbalance and hypoxia signaling pathway. Additionally, we found dysregulation in genes clustered in pattern recognition receptors, macrophage activation, oxidative stress, and phagocytosis. Our results suggest that i.n. MSCs administration to noninflamed healthy lungs induces, in the late stages, low-grade inflammatory responses aiming at the clearance of MSCs graft
    corecore