6 research outputs found

    Adolescence is a sensitive period for prefrontal microglia to act on cognitive development

    Full text link
    The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain’s resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development

    Pericytes regulate vascular immune homeostasis in the CNS.

    Full text link
    Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood-brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfb ret/ret ), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfb ret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti-ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfb ret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfb ret/ret ;2D2 tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder

    Lactation-associated macrophages exist in murine mammary tissue and human milk

    Full text link
    Macrophages are involved in immune defense, organogenesis and tissue homeostasis. Macrophages contribute to the different phases of mammary gland remodeling during development, pregnancy and involution postlactation. Less is known about the dynamics of mammary gland macrophages in the lactation stage. Here, we describe a macrophage population present during lactation in mice. By multiparameter flow cytometry and single-cell RNA sequencing, we identified a lactation-induced CD11c+^{+}CX3CR1+^{+}Dectin-1+^{+} macrophage population (liMac) that was distinct from the two resident F4/80hi^{hi} and F4/80lo^{lo} macrophage subsets present pregestationally. LiMacs were predominantly monocyte-derived and expanded by proliferation in situ concomitant with nursing. LiMacs developed independently of IL-34, but required CSF-1 signaling and were partly microbiota-dependent. Locally, they resided adjacent to the basal cells of the alveoli and extravasated into the milk. We found several macrophage subsets in human milk that resembled liMacs. Collectively, these findings reveal the emergence of unique macrophages in the mammary gland and milk during lactation

    Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development

    Full text link
    Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-β, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-β

    Lactation-associated macrophages exist in murine mammary tissue and human milk

    Get PDF
    Macrophages are involved in immune defense, organogenesis and tissue homeostasis. Macrophages contribute to the different phases of mammary gland remodeling during development, pregnancy and involution postlactation. Less is known about the dynamics of mammary gland macrophages in the lactation stage. Here, we describe a macrophage population present during lactation in mice. By multiparameter flow cytometry and single-cell RNA sequencing, we identified a lactation-induced CD11c(+)CX3CR1(+)Dectin-1(+) macrophage population (liMac) that was distinct from the two resident F4/80(hi) and F4/80(lo) macrophage subsets present pregestationally. LiMacs were predominantly monocyte-derived and expanded by proliferation in situ concomitant with nursing. LiMacs developed independently of IL-34, but required CSF-1 signaling and were partly microbiota-dependent. Locally, they resided adjacent to the basal cells of the alveoli and extravasated into the milk. We found several macrophage subsets in human milk that resembled liMacs. Collectively, these findings reveal the emergence of unique macrophages in the mammary gland and milk during lactation.ISSN:1529-2908ISSN:1529-291

    Macrophages preserve endothelial cell specialization in the adrenal gland to modulate aldosterone secretion and blood pressure

    No full text
    Summary: Macrophages play crucial roles in organ-specific functions and homeostasis. In the adrenal gland, macrophages closely associate with sinusoidal capillaries in the aldosterone-producing zona glomerulosa. We demonstrate that macrophages preserve capillary specialization and modulate aldosterone secretion. Using macrophage-specific deletion of VEGF-A, single-cell transcriptomics, and functional phenotyping, we found that the loss of VEGF-A depletes PLVAP+ fenestrated endothelial cells in the zona glomerulosa, leading to increased basement membrane collagen IV deposition and subendothelial fibrosis. This results in increased aldosterone secretion, called “haptosecretagogue” signaling. Human aldosterone-producing adenomas also show capillary rarefaction and basement membrane thickening. Mice with myeloid cell-specific VEGF-A deletion exhibit elevated serum aldosterone, hypokalemia, and hypertension, mimicking primary aldosteronism. These findings underscore macrophage-to-endothelial cell signaling as essential for endothelial cell specialization, adrenal gland function, and blood pressure regulation, with broader implications for other endocrine organs
    corecore