9 research outputs found

    Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers

    Get PDF
    Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration

    Software and Hardware Systems for Abdominal Aortic Aneurysm Mechanical Properties Investigation

    Get PDF
    The main goal of this paper is to describe two different systems that were developed for the purpose of abdominal aortic aneurysm mechanical properties investigation and to present the results of the measurements. The first system is based on the "Bubble Inflated" method and it increases the pressure of physiological saline which affects blood vessel tissue and causes mechanical deformation. The system provides recording the data about the current value of the pressure in the physiological saline by using the appropriate pressure sensor. The second system makes stretches of the vessel tissue in uni-axial direction and save the data about the force and the elongation. Both of these systems use cameras for assessment of the deformation. Obtained results from both systems are used for numerical simulation of computer model for abdominal aortic aneurysm. It gives a new avenue for application of software and hardware systems for determination of vascular tissue properties in the clinical practice

    Analysis of Square Coaxial Line Family

    No full text
    In this paper, the Equivalent Electrodes Method (EEM) has been proposed for the analysis of square coaxial lines family. Lines with single and two layer perfect or imperfect medium have been analyzed. The capacitance per unit length of these lines has been calculated. The results obtained by EEM have been compared with those reported in the literature, obtained by other methods, and those obtained by using software package COMSOL Multiphysics. Also, with the aim of comparison of the results, capacitance measurements based on a high resolution CDC (Capacitance to Digital Converter) have been realized. All results obtained have been found to be in very good agreement

    Analysis of Square Coaxial Line Family

    No full text
    In this paper, the Equivalent Electrodes Method (EEM) has been proposed for the analysis of square coaxial lines family. Lines with single and two layer perfect or imperfect medium have been analyzed. The capacitance per unit length of these lines has been calculated. The results obtained by EEM have been compared with those reported in the literature, obtained by other methods, and those obtained by using software package COMSOL Multiphysics. Also, with the aim of comparison of the results, capacitance measurements based on a high resolution CDC (Capacitance to Digital Converter) have been realized. All results obtained have been found to be in very good agreement

    Remotely Analyze Spine Angle in Rehabilitation After Spine Surgery using Acceleration and Gyro Sensors

    No full text
    The purpose of this study was to determine range of motion values of lumbar spine in rehabilitation procedure after surgery, using wearable wireless sensors. In this paper, we present a method for determining the mobility of the spinal column using a network of sensors. The sensors consist of accelerometers and gyroscopes, and mutual communication is accomplished using a I2C bus. The main sensor node collects data from all the sensors and sends them to a computer using Bluetooth communication. The collected data is then filtered and converted to the values of the angles that are of interest to quantify the movement

    Remotely Analyze Spine Angle in Rehabilitation After Spine Surgery using Acceleration and Gyro Sensors

    No full text
    The purpose of this study was to determine range of motion values of lumbar spine in rehabilitation procedure after surgery, using wearable wireless sensors. In this paper, we present a method for determining the mobility of the spinal column using a network of sensors. The sensors consist of accelerometers and gyroscopes, and mutual communication is accomplished using a I2C bus. The main sensor node collects data from all the sensors and sends them to a computer using Bluetooth communication. The collected data is then filtered and converted to the values of the angles that are of interest to quantify the movement

    Acceleration of image filtering algorithms for 3D visualization of murine lungs using dataflow engines

    No full text
    Image filtering is one of the most common and important tasks in image processing applications. In this paper, image processing using a mean filtering algorithm combined with thresholding and binarization algorithms for the 3D visualization and analysis of murine lungs is explained. These algorithms are then mapped on the Maxler's MAX2336B Dataflow Engine (DFE) to significantly increase calculation speed. Several different DFE configurations were tested and each yielded different performance characteristics. Optimal algorithm calculation speed was up to 30 fold baseline calculation speed
    corecore