6 research outputs found
PIONIER: a status report
The visitor instrument PIONIER provides VLTI with improved imaging capabilities and sensitivity. The instrument started routinely delivering scientic data in November 2010, that is less than 12 months after being approved by the ESO Science and Technical Committee. We recall the challenges that had to be tackled to design, built and commission PIONIER. We summarize the typical performances and some astrophysical results obtained so far. We conclude this paper by summarizing lessons learned
PIONIER: a status report
The visitor instrument PIONIER provides VLTI with improved imaging capabilities and sensitivity. The instrument started routinely delivering scientic data in November 2010, that is less than 12 months after being approved by the ESO Science and Technical Committee. We recall the challenges that had to be tackled to design, built and commission PIONIER. We summarize the typical performances and some astrophysical results obtained so far. We conclude this paper by summarizing lessons learned
Modeling Mid-Infrared Variability of Circumstellar Disks with Non-Axisymmetric Structure
Recent mid-infrared observations of young stellar objects have found
significant variations possibly indicative of changes in the structure of the
circumstellar disk. Previous models of this variability have been restricted to
axisymmetric perturbations in the disk. We consider simple models of a
non-axisymmetric variation in the inner disk, such as a warp or a spiral wave.
We find that the precession of these non-axisymmetric structures produce
negligible flux variations but a change in the height of these structures can
lead to significant changes in the mid-infrared flux. Applying these models to
observations of the young stellar object LRLL 31 suggests that the observed
variability could be explained by a warped inner disk with variable scale
height. This suggests that some of the variability observed in young stellar
objects could be explained by non-axisymmetric disturbances in the inner disk
and this variability would be easily observable in future studies.Comment: 9 pages plus 16 figures and 1 appendix. Accepted to Ap
Confronting Standard Models of Proto–Planetary Disks With New Mid–Infrared Sizes from the Keck Interferometer
This is the final version of the article. Available from American Astronomical Society via the DOI in this record.The accepted author manuscript is in ORE at http://hdl.handle.net/10871/21611We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used "star + inner dust rim + flared disk" class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at "transition disk"-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.M.S. was supported by NASA ADAP grant NNX09AC73G. R.W.R. was supported by the IR&D program of The Aerospace Corporation