1,913 research outputs found
Transition to omni-channel approach: the case of Italian retailers
Addressing consumers’ needs and expectations is one of the main retailers’ concerns. More
and more of these expectations have been driven by consumers’ constant use of their mobile
devices for almost any aspect of their lives. Therefore, we build on the argument that
digitalization is affecting how retailers are operating and how they re-organize their channels
so as to meet those expectations. Many argue that the common approach retailers embrace is
adopting omni-channel strategy. In their endeavor to fully integrate the channels into an omnichannel
model, retailers need to pass several milestones, such as successful customer
engagement, effective logistics management, and integrated analytics systems. This paper is
concerned with current state of channel integration and further development of channel
integration towards omni-channel approach. We collected data by surveying and interviewing
thirteen Italian retailers operating in three sectors: fashion, bookstores and media, and
consumer electronics. Moreover, we also analyzed results of panel discussion at which nine
retailers participated. The results of this explorative study show current state of retail industry
in Italy and their activities towards channel integration. We highlight state of the art research
and use a thematic bottom-up approach to draw propositions for future research areas
Alien plant invasions in Mediterranean habitats: an assessment for Sicily
Levels of plant invasions in different habitat types were assessed in several regional studies, but few of them were from the Mediterranean. Here we compare the levels of vascular plant invasion across habitats and plant communities of Sicily. We used a large dataset of plant species presences/ absences in vegetation plots to analyze the invasion patterns across habitats considering biogeography, life form and phenology of alien plants. Vegetation plots were classified based on the EUNIS classification of European habitats. The invasiveness of each species was expressed in terms of its absolute and percentage frequency. Representation of different life forms and phenological patterns was compared between alien and native species. The fidelity of alien species to individual habitats was calculated using the phi coefficient. Our analysis shows that annual and woody species are the most represented life forms in the alien flora of Sicily and that alien species tend to have a longer flowering period than the native species. The investigated habitats differed strongly in their level of invasion by alien species, ranging from 0 to 15.6% of aliens of all species recorded. Most of the habitats were colonized by very few alien species or completely lacked them, except for sandy coasts, naturally-disturbed riverbeds, and synanthropic habitats. It must be noted, however, that the number of alien species occurring in a given habitat does not relate to the severity of the impact of invasion in that habitat. Some habitats are invaded by few (or single) species, which attain a high cover, transforming the whole ecosystem. The habitat-based approach proved to be suitable for evaluating the habitat specificity and frequency of alien species at a regional scale, improving the capacity for risk assessment in different ecological contexts
Decoding of semantic categories of imagined concepts of animals and tools in fNIRS
Objective. Semantic decoding refers to the identification of semantic concepts from recordings of an individual's brain activity. It has been previously reported in functional magnetic resonance imaging and electroencephalography. We investigate whether semantic decoding is possible with functional near-infrared spectroscopy (fNIRS). Specifically, we attempt to differentiate between the semantic categories of animals and tools. We also identify suitable mental tasks for potential brain–computer interface (BCI) applications. Approach. We explore the feasibility of a silent naming task, for the first time in fNIRS, and propose three novel intuitive mental tasks based on imagining concepts using three sensory modalities: visual, auditory, and tactile. Participants are asked to visualize an object in their minds, imagine the sounds made by the object, and imagine the feeling of touching the object. A general linear model is used to extract hemodynamic responses that are then classified via logistic regression in a univariate and multivariate manner. Main results. We successfully classify all tasks with mean accuracies of 76.2% for the silent naming task, 80.9% for the visual imagery task, 72.8% for the auditory imagery task, and 70.4% for the tactile imagery task. Furthermore, we show that consistent neural representations of semantic categories exist by applying classifiers across tasks. Significance. These findings show that semantic decoding is possible in fNIRS. The study is the first step toward the use of semantic decoding for intuitive BCI applications for communication
Point-process analysis of neural spiking activity of muscle spindles recorded from thin-film longitudinal intrafascicular electrodes
Recordings from thin-film Longitudinal Intra-Fascicular Electrodes (tfLIFE) together with a wavelet-based de-noising and a correlation-based spike sorting algorithm, give access to firing patterns of muscle spindle afferents. In this study we use a point process probability structure to assess mechanical stimulus-response characteristics of muscle spindle spike trains. We assume that the stimulus intensity is primarily a linear combination of the spontaneous firing rate, the muscle extension, and the stretch velocity. By using the ability of the point process framework to provide an objective goodness of fit analysis, we were able to distinguish two classes of spike clusters with different statistical structure. We found that spike clusters with higher SNR have a temporal structure that can be fitted by an inverse Gaussian distribution while lower SNR clusters follow a Poisson-like distribution. The point process algorithm is further able to provide the instantaneous intensity function associated with the stimulus-response model with the best goodness of fit. This important result is a first step towards a point process decoding algorithm to estimate the muscle length and possibly provide closed loop Functional Electrical Stimulation (FES) systems with natural sensory feedback information.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant DP1-OD003646
Met exon 14 skipping: A case study for the detection of genetic variants in cancer driver genes by deep learning
Background: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable. Methods: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms. Results: The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion. Conclusions: Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool
Soluble phthalocyanines as optical gas sensing materials
A novel soluble phthalocyanine compound, i.e zinc phthalocyanine (sulfonamide) has been synthesized by chemical substitution of zinc phthalocyanine and used to produce thin solid films by means of the spin coating technique. The chemical structure of the spin coated films has been investigated by FT-IR analysis. Atomic Force Microscopy (AFM) has been used to characterize the film morphology and to measure the film thickness. The spin coated films have been tested as optical sensing materials of volatile organic compounds such as methanol, ethanol and 2-propanol. The change of optical reflectance of the films upon exposure to alcohol-vapour-containing atmospheres has been measured versus alcohol concentration and exposure time. The films exhibit a fast and reproducible response, with a complete and fast recovery in methanol and ethanol-containing atmospheres, while diffusion-driven effects appear during exposure to 2-propanol. The response and sensitivity of the films to ethanol vapour is higher than to methanol and 2-propanol
Reduction of cardiac imaging tests during the COVID-19 pandemic: The case of Italy. Findings from the IAEA Non-invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)
BACKGROUND: In early 2020, COVID-19 massively hit Italy, earlier and harder than any other European country. This caused a series of strict containment measures, aimed at blocking the spread of the pandemic. Healthcare delivery was also affected when resources were diverted towards care of COVID-19 patients, including intensive care wards. AIM OF THE STUDY: The aim is assessing the impact of COVID-19 on cardiac imaging in Italy, compare to the Rest of Europe (RoE) and the World (RoW). METHODS: A global survey was conducted in May–June 2020 worldwide, through a questionnaire distributed online. The survey covered three periods: March and April 2020, and March 2019. Data from 52 Italian centres, a subset of the 909 participating centres from 108 countries, were analyzed. RESULTS: In Italy, volumes decreased by 67% in March 2020, compared to March 2019, as opposed to a significantly lower decrease (p < 0.001) in RoE and RoW (41% and 40%, respectively). A further decrease from March 2020 to April 2020 summed up to 76% for the North, 77% for the Centre and 86% for the South. When compared to the RoE and RoW, this further decrease from March 2020 to April 2020 in Italy was significantly less (p = 0.005), most likely reflecting the earlier effects of the containment measures in Italy, taken earlier than anywhere else in the West. CONCLUSIONS: The COVID-19 pandemic massively hit Italy and caused a disruption of healthcare services, including cardiac imaging studies. This raises concern about the medium- and long-term consequences for the high number of patients who were denied timely diagnoses and the subsequent lifesaving therapies and procedures
CircumMed+Euro pine forest database: an electronic archive for Mediterranean and European forests
Large thematic databases of vegetation-plots are increasingly needed for vegetation studies and biodiversity research. In this paper, we present the CircumMed+Euro Pine Forest Database (GIVD ID: EU-00-026), which in September 2018 encompassed 5590 records from pine-dominated vegetation plots (relevés) and associated vegetation types from 23 countries of temperate Europe, Eastern Mediterranean and North Africa. These vegetation plots were collected through a detailed literature search for plots not included in the European Vegetation Archive (EVA). The database includes plots from 192 bibliographic references and unpublished vegetation plots by different authors. All vegetation plots are georeferenced, and coordinates are available with different accuracy as reported by the authors. The database is managed by the Vegetation Science Group, Department of Botany and Zoology of the Masaryk University in Brno (Czech Republic). It is registered in the Global Index of Vegetation-Plot Databases (GIVD) with the code EU-00-026 and is accessible through the European Vegetation Archive (EVA) or by asking the Custodian. The CircumMed+Euro Pine Forest Database is an important resource for conducting different types of broad-scale studies in the fields of vegetation classification, plant invasion ecology, macroecology and biological conservationN/
- …